

Australia A: 2.00 Canada 3.15
Denmark Kr. 17.00 Denmark Kr. 17.00
Germany Dm, 5.00 Greece Dr. 87.00 Holland DfI. 5.75 italy L. 1900 Norway Kr. 17.25 Singapore M: 4.50 Singapore M. 4.50
Spain Ptas. 140.00
U.S.A. \& 2.50

wore

FEBRUARY 1980 50p

Microwave intruder alarm Multiphonic organ Townsman aerial

WIRELESS WORLD, februait 1980

Front cover shows thyristor
stack wwith heat sinks. made
by Pinnacle Electronics stack
by Pinnacle Electronics $L t d$.
Ph by Pitonacle er lectionics Lto
Photographer Paul Brierley.
in OUR NEXT ISSUE
Pulse-induction metal de-
tector tector incorporates
method of eliminating method of eliminating
magnetic viscosity effects
Electronic security lock Electronic security lock
uses m.n.0.s. non-volatile devicese to ogive a four-digit
combination which is in combination which is in
vulnerable to power cuts Acoustic measurement without the use of an-
echoic conditions is de-
scribed

ibpa ABC

wireless world

ELECTRONICS /TELEVISION / RADIO / AUDIO
FEBRUARY 1980 Vol 86 No 1530

33 Status symbols
34 Microwave intruder detector - 1 by K. Holford
39 Circuit analysis by small computer by A. S. Beasley
41 Adaptable-anatomy a.t.e. 54 Literature received 81 Books received
42 World of amateur radio
43 More on the scientific computer - 2 by J. H. Adams
46 New frequency allocations
49 Multiphonic synthesizer organ by J. H. Asbery
51 What's so natural about e? by J. C. Finlay
55 Letters to the editor Loop aerials Scientific computer Perceiving direction in surround sound
Twelve more $\begin{gathered}58 \text { News of the month } \\ \text { Automatic car telephones }\end{gathered}$
62 Circuit ideas Radio control encoder Fuse tester Reverberation amplifier
67 Adapter unit for spectrum analyser by R. C. V. Macario
70 Novatexts: two-transistor astables by P. Williams
72 Townsman aerial by B. J. P. Howlett
77 Clock timer by R. D. Clemow and T. C. Carden
82 Electronic focusing by D.Di Mario
84 New products'
86 Sidebands

THINK

 of power amplifiers will handle it
ne $1|\mid \boldsymbol{H}$
'S' range is designed to handle heavy industrial usage in the fields of vibrator driving, variable frequency power supplies and servo motor systems.

S 500D

Dual Channel
9" rack mount $31 / 2^{\prime \prime}$ high
500w r.m.s. into 2.5 ohms per channel 900w r.m.s. in bridge mode DC-20 KHZ at full power
0.005% harmonic distortion (typical) at 300 w r.m.s. into 4 ohms at 1 KHZ 3KW dissipation from in-built force cooled dissipators

S 250D

Single Channel
19" rack mount $31 / 2^{\prime \prime}$ high
500w r.m.s. into 2.5 ohms
Retro-convertible to dual channel DC-20 KHZ at full power
Full short and open circuit protection Drives totally reactive loads with no adverse effects

LEVELL MULTITESTER TYPE TM11
ELECTRONIC

A complete range of matching transformers and peripheral equipment for closed loop, constant current and voltage use are available.
Alternative input and output termination to order. Rack case for bench use built to specifications. For complete data write or call.

Kirkham Electronics
MILL HALL, MILL LANE, PULHAM MARKET, DISS, NORFOLK IP21 4XL DIV'SION OF K.R.S. LIMITED,
TELEPHONE (037 976) 639/594

MICROCHIPS AT MICRO PRIGES	INTERSIL GOWIPS ARE		THE MOST VERSATILE LIQUID CRYSTAL DISPLAY $\begin{array}{lll}1.24 & 25+100+ \\ 6.45 & 5.50 & 5.25\end{array}$
	Due to bulk purchase, we are able to offer Compare our prices and see how much CCLIT107CPL IC18038CCP		$5^{\prime \prime}$ Field effect LCD display featuring $31 / 2$ digits, colon, plus / minus sign, 3 decimal points and "LO BAT" indicator.
4116 Dynamic RAM 5101 1K CMOS RAM. Low power4.00 5.95 .95	LINEAR ICs	'SE 01 Sound Effects Kit	LO BAT' indicator Ideal for DMMs, DPMs,
Low power 3.85 EPROMS 1702 A 3.75 2708 5.95 2716 Single 5V supply 19.95	$\begin{array}{ll}555 \mathrm{~N}-8 \text { Timer } & \text { 18p } \\ 56 \mathrm{~N}-14 \text { Dual Timer } & \text { 50p } \\ 723 \mathrm{CN} \text { Voltage Regulator } & \text { 33p }\end{array}$	The SE-01 is a complere kit that contains a build a pro-	digital thermometers, AM/FM radio readouts. Just look at the features.
	GONVERTER MT5GS		sumption, high contrast sumption, high donast
	Now you can operate $115 / 120$ Volts American equipment from 240 Volts. This converier has outlets for American type 2 or 3 pin plugs. Rated 20 VA		ratio, wide viewing angle, rapid response, proven sealing techniques, superior MTBF,
	FFom T.1. TLAEOO BAR/DOT DRIVER Vortage curront or audio dieplisvo. and dircuir notes. eni.75 NEW!		Over 300,000 already sold! Perfect interface for Intersil 710640 Pin DIL.
7 WATT AUD AMP KIT		One S. Shot and Envelope Controls. A Quad Op Amp IC is used to implement an Adjustable ,	
		or almost an infinte number of other sounds. The unit has a mustiple of appli-	All orders to
$\begin{aligned} & \text { DISPLAY LEDS AT } \\ & \text { LOWEST PRICES } \end{aligned}$		$\begin{aligned} & \text { con } \\ & \substack{\text { nong } \\ \text { soed }} \end{aligned}$	4 Meeting Street ledore, Nr. Bideford
FNO 500 75p		PRP $50 \mathrm{p}+\mathrm{VAT}$	Telex 8953084

Hilomast Ltd

HILOMAST LIMITED HE STREET HEYBRIDGE - MALDON
ESSEX CM9 7 NB ENGLAND ESSEX CM9 7NB ENGLAND
Tel. MALDON (0621$) 548480$ Tel. MALDON (0621) 55480
TELEX NO 995855

Quantum Electronics
 NEW PRODUCTS - NEW PRODUCTS

POWER AMP MODULES AND SUPPLIES
The power amp modules are now also avaiable to reteail customers in a variety of powers
and formats up to 260 w r.m. . They use the same high performance circuitr as the kits

 modules, all of h hich yse toroidall transtormerss, also available separately. The module
illustrated is a medium duty 150 W r.m.s. type, the M1508, which hequires the MS3
supply.
M1508: £35.79 MS3: $£ 26.28$

1A STAMFORD STREET, LEICESTER. Tel. 546198

OX DISCO, Box 123 CLAYMONT, DE 19703, U.S.A. Tel. 1-302-798-7932
MINIC TELEPRODUCTOR, BоX 12035 , s-750 12, UPPSALA 12, SWEDEN L.A.B. (A.P.S.), vandkunsten 4, dk 1467, copenhagen, deṇmark
 WW - 033 FOR FURTHER DETAILS

The King of Valves

Genuine Gold Lion valves - hand built, utilising advanced pumping. techniques and individually tested
to a tight specification - are your to a tight specification - are your
answer to the high quality sound demands made by musicians and
listeners alike.
Gold Lion KT77's and KT88's covering $30-200$ watts, are now data and distribution details. Find out all about the King of Quality-fromM-OV.
© Trade Mark of M-OV Audio Valves.

MOV

 WW - O11 FOR FURTHER DETAILS

Hall Electric Limited International Semiconductor Distributor

TOTAL AMPLIFICATION FROM CRIMSON ELEKTRIK

LateralThinking
 The perfect definitive power amplifiershould

run absolutely stable and completely undistorted across
a full frequency range up to the highest powerlevel with total dependability", we said. Our resolve wasto make that
 convention with a radical new solution:MOS-FET technology. And the result? No thermal Simplercircuits Fewdary breakdown. Therefore, greater reliability under tough conditions. Whatever your pplication;variablefrequency

Graduate to the 80's. MOS-FET.
HHElectronic, Dept. A5, Viking Way, Bar Hill Cambridge CB3 8EL. Telephone:Crafts Hill (0954) 81140 .
Telex: 817515 HHElec G.
systems, vibratordriving, or superioraudio installations,
ournew MOS-FET amplifiers will ournewMOS-FET amplifiers will deliverperfect
waveforms right up to 50 kHz atf full veforms right up to 50 kHz atfull power.
Now this technology is available to rackmount format with models from 150 to 800 Watts and upwards in multiples, using the X300 frequency dividing network: Soif youre thinking the right lines, then drop us a line yourself and well tell the right lines, then drop us a line yourself and we'llt
you much more

fact:
 the Pro Master" ${ }^{\text {s }}$ Sound system is not an evolution... it's a full-blown REVOUUTION:

The PRO MASTER modular sound system ushers in new generation of sound system versatility, reliability, and quality for today's entertainers, musicians, and speakers - for use in settings as diverse as intimate clubs, lounges, large auditoriums, churches, and schools. Its sophisticated computer design techniques, advanced materials, and countless hours of personal consultatio with performers and sound technicians

Revolutionary New Console

 Finally $!$ The best of both worlds. A console so easy to use that it wont overwhell the beginning group. yet with theadvanced features and capabilities required by professional performerners - capuchith has preqe-fader monitior mixixing. professional performers - Such as pre-fader monitor mixing,
effiects andor buittin reverb, with their own tone controls, LED clipping indicators with h tetenuators on each input, and
full patching faculites
 as a stereo recording console for groups that want to "tay
down a few tracks " without paying for studio time, or can be down tew tracks without payin for studio time or can be
used an an aitr-sonhisticated keyboaid mixer with power.
Unitized ARMO-DUP" Unitized ARMO-DUR" structural foam combination clase
and chassis makes it more durable than steel. Ultra-light: and chassis
only 47 pounds.

Revolutionary: Variable Dispersion Sound System

```
Advanced new variable dispersio
```

high-frequency horn system
projects your sound - everywhere 60° Iong-throw or r $120{ }^{\circ}$ wide-angle
dispersion with the twist of a kno Tailors the sound to the roomeven L-shaped rooms.

Revolutionary New Loudspeaker
Every extra ounce-every unnecessary cubic inch - has
been computer designed OUT Of the PRO MASTEP been computer designed OUT of the PRO MASTER
loudspeaker. Modern materials and moulding technioues accommodate a high-perrormance $15-$-idch h woofera and a
high-reauency hight-requency horn and compression driver in a statatingly
small efficient enclosure. Less than 28 inches h igh, 23
 pounds. Yet, the power handling capacity is a remarkable
150 watts, and the frequency response is 50 to 15 kHz .

Revolutionary: FEEDBACK FINDER"/ trequencies for precise adjustment of the twin 10 -band equalizers.
Enables you to equalize for maximum gain on the house and/or monitor system. Nothing else like it!

Revolutionary: PATCH BLOCK" Patch Panel

beck inel is a unique combination tlock diagram and patch The back panelis a unique combination block diagram and patch
panel with 12 path ${ }^{2}$ ing jacks located at appropriate points on the
bick panel with 12 patching jacks located at appropiriate points on the
block diagram. For the beginner who is taking his act on the road
for the tirst time the for the first time, the PRO MASTER works "as is is, with no special
connections. But with the PATCH BLOCK, the professional can Connections. But with the APTCH BLCOCK, hhe professional can
create a wide wariety of setups and add auxiliary equipment
without makeshit connections without trakeshitt toonnections. And you can change setups at a
moment's notice without contusion. Simplicity and versatity, the
PROO MASTER has them both!

Hear the Revolutionary New Sound!

Topvalue testequipment fromTANDY

LCD DIGITAL MULTIMETER. LOW-COST LCD MULTIMETER COMPONENTS AND PARTS

 impedance.
Reading to ± 1999

AC/DC 8 MHzOSCILLOSCOPE

You save because we design,

Finally, you can have all the advantages of DMMs and none of the disadvantages of analogues for about the same price

Our new 169 is a tough, lightweight,
battery-powered digital multimeter for use in the field on on the bench. It is a $3 \frac{1}{2}$-digit, full 5 -function DMM with respectable $.25 \%$ DC accuracy

Its low-parts-count, high-efficiency design keeps power consumption to a minimum for longer componen life and fewer failures. MTBF is 20,000 hrs. or about 10 years
 Is this the
 169 will stand up to all the mechanical shock

 for Analogue

per year at a cost of about $£ 1.50$.
When you factor in features like function and range annunciation right on the display, auto-zero, auto polarity, 60% larger display than other DMMs and the easy-to-read, colour coded front panel, we think you'll get the point. No analogue meter or DMM can match the pricel performance of the new 169. It costs $£ 99$ (plus VAT) For information on the 169 or any Keithley DMM c
Telex: 847047

ww-062 FOR FURTHER DETAILS

KEITHLEY

Keithley Instruments Ltd.
1, Boulton Road
GB-Reading, Berkshire RG2 ONL
UNIED KNGDOM (7734) 861287 Telex: (851) 847047 Helghorstrasse 5
D-8000 München 70
10899714.40 (0899) $7144-40-65$
Telex: 5212160

Keithley Instruments SARL 44, Rue Anatole Frrance 01-014-22-06. O1-014-22-06.
Telex:
(842) 204188

Carston Electronics

Oscilloscopes
TEKTRONIX 465
DC-100MHz Dual Trace 5 mV -5V/Div $0.05 \mu \mathrm{~s}-0.5 \mathrm{~s} /$ Div Delayed T/B XY DC 4 MHz

TEKTRONIX 475A
DC-250MHz Dual Trace 5 mV -5V/Div $0.01 \mu \mathrm{~s}-0.5 \mathrm{~s} /$ Div Delayed T/B XY DC 3 MHz

THESEINSTRUMENTS SOLD
WITH ONE YEARFULL GUNDANTEE

WW - O48 FOR FURTHER DETAUS

NEW UNBEATABLE 1980 PRICES NOW! EXPLORER/85

Professional Computer Kit

FEATURES INTEL 8085 CPU

WITH ON BOARD S-100 EXPANSION
FLEXIBILITY: Real flexibility at LAST. The EXPLORER $/ 85$ features the intel 8085 cpu 100%
compatible with all 880 A and 8085 sofware. Runs at 3 MHz . Mother Board (Level A) with 2 ,
$\mathrm{S}-100$ pads expandable to 6 (Level C) S-100 pads ex
MEMMRY
2K Monitr

> INTERFACES STANDALONE

Casserte interface (Lith 11 Keyboard Terminal, 32/64 characters per 16 lines

Direct interface for any $\mathrm{S}-100$ Board.
FULLE Euffering decoding for $\mathrm{S}-10 \mathrm{~N}$ Bus pads, wait state generator for slow memory.
Each stage has separate 5 A regutor for improved isolation and freedom from cross talk.

Runs with Nortrt Star controller and Floppies/CPM
EXPLORER/85 is expandable to meeet your own
EXPLORER/85 is expandable to meet your own requirements with easy to obtain S-100
perioherals.
peripherals. 85 an be purchased in individual levels, kit form or wired and tested. OR as a
EXPLORER
package deal as above.

WE ARE KILLING INFLATION WITH

ELF II

the thied and tested MICROCOMPUTER SYSTEM THAT EXPANDS TO MEET YOUR NEEDS Computer Kit
STARTS AT $£ 59.95$
BOARD WITH VIDEO OUTPUT

+ VAT

 purposes.

ELF II EXPANSION KITS : Giant bearid *RCA 1802 users manual (nil VAT) *On cassetfe Text Editior, Assembler, Disassombler (oach) Save 10% sad buy all thres together.

\qquad

NEWTRONICS KEYBOARD TERMINAL AT £114.20 + VAT The Newtronics Keyboard Terminal is a low cost stand alone Video Terminal that operates quietly and maintenance tree. It will allow you
to display on a monitor 16 lines of 64 characters or 16 lines of 32 to display on a monitor 16 lines of 64 ctaracters or 16 lines of 32
characters on a modified TV RF Moduator required).

 data plus a power source of
finished in IM BMe-e-black. And if that is not enough the price is only
$£ 114.20+$ VAT as a kit, or $£ 144.20+$ VAT assembled and tested.

THE ATARI VIDEO COMPUTER SYSTEM $£ 138$ + VAT Ateris' Vidoo Computer system now offors moro
than 1300 differant geme variations ond options in than 1300 differont geme variations and option
twonty groen Geme Program $T M$ carridgoat Corrridgoun now available. Al at $\mathbf{E 1 3 . 9 0}$ each +
 Extra Padallo Contoilers - $514.90+$ VAT

EKeyboard Controlers $-\varepsilon 16.90+$ VAT RACAL AP12, C12 TAPES: 10 for $£ 4.50$ + Nat available sk full basic for | NOW AVAILABLE 8K FULL BASIC FOR |
| :--- |
| ELFII |
| NEWSOFT GAMES FOR ELF II. 4 for $\mathbf{E 5}+$ |

SEND SAE FOR COMPREHENSIVE BROCHURE Please add VAT to all prices (except manuals). P\&P $£ 2$. Please make
cheques and postal orders payable to NETRONICS or phone your
order quoting BARCLAYCARD ACCESS number order quoting BARCLAYCARD, ACCESS number. We are now open for demonstrations and Sales, Monday-Saturday,
9.30 a.m.-6. 30 p.m. Near Highgate Underground, on main A1 into NEW Adodess: NEWTRONICS Bigger Premises

255 ARCHWAY ROAD LONDON N6 5BS

The BIG name in smallelectric motors

and here's just one reason why . WE'VE LINKED OUR STEPPER MOTORS WITH I.C.'s - A GREAT SPEED DRIVE YND VARIABLE PROBLEMS AND POSITIONING ROBLEMS
It's ideas like this that make Impex leaders in small electric motors. In this
case we've done away with costly and complicated electronic drive requirements and given you simplicity and efficiency at a price that makes sense. Why not find more about the complete range of below, or phone

IMPEX ELECTRICAL

VIDEO or AUDIO BULK ERASURE
 VIDEO AND AUDIO AUDIO ONLY LR70/71 bulk tape erasers are simple to operate and will erase
cassettes, cartridges and rees of tape up to a maximum reel
size of $111 \frac{t^{2}}{}$ and tape width size of $11 \frac{1}{t^{\prime \prime}}$ and tape width of $1^{\prime \prime}$, quickly and efficiently. LR70/71 buik erasers are currently used in Broadcast Companies,
Recording Studios, Government Departments, Educational Establish-
ments and the Comer
Quality equipment moderately priced

LEEVERS-RICH EQUIPMENT LIMITED 319 Trinity Road, Wandsworth
London SW18 1 1YO
1874-9054 Telex 923455
ww - 015 FOR FURTHER DETALS

Powerfactor:itFigures!

$$
\begin{aligned}
& \text { NEW from Anders. - Covers full P.F. range } \\
& \text { Power Factor and indicates quadran } \\
& \begin{array}{c}
\text { precise dititital display in, an, Unique design-no } \\
\text { panel mounting case. }
\end{array} \\
& \text { panel mounting case. } \begin{array}{c}
\text { separate traneducer } \\
\text { required. }
\end{array} \\
& \text { Ask for further details on the - Rugged, reliable and } \\
& \text { DIGITAL Wattmaters accurato. } \\
& \text { DIGITAL Wattmeters, - From £95-discounts } \\
& \text { Frequency Meters, Power forquantity-competitive } \\
& \begin{array}{l}
\text { Fartor Meters and matching with analogue equivalents. } \\
\text { DC panel meters. Standard }
\end{array}
\end{aligned}
$$

You'll do better at Martin Associates
Youll/ do better at Martin Ass
We guarantee it!

ww - 055 FOR FURTHER DETALLS

SIWPIV AIIFID - and steying there! O.E.円. PLATE POWER AMPLIFIERS

MADE IN ENGLAND

	100	250	500	1000	2500	5000
HY 120P 8Ω	£10.30	£9.37	£8.51	£7.74	£7.04	£6.40
$\begin{aligned} & \text { HY } 2000 \text { P } \\ & 120 \mathrm{Wms} \end{aligned}$ 8Ω	£13.18	£11.98	£10.89	$£ 9.90$	$£ 9.00$	£8.18
HY 400P 200W rms 4Ω	£19.26	£17.51	£15.92	£14.47	£13.16	£11.96

${ }^{-12}$ HYP 120 P and HY 200P
$116 \times 50 \times 23 \mathrm{~mm}$
$116 \times 75 \times 23 \mathrm{~mm}$

WIRELESS WORLD. FEbRUARY 1980

Assembled in attractive instrument cases with
carrying handles.

 protection. DC and $A C$ circuitry fused. Mains
output via $13 A$ type slot. 2 year guarantee.

Filtered output 18% extra
SINEWAVE INVERTERS A new range of units designed to. power
equipment requiring a smooth waveform. equipment requiring a smorth waveform.
Assembled in tough instrument cases with carrying handles.
DC input: 12 vor 24 v types $(\pm 2 \mathrm{v}$.
AC output: 240 v or 110 l types on load
.

Frequency $20 \mathrm{~Hz} \pm 3 \%$ typical.
Panel meter indicates voltage outpu
Reverse polarity in
Reverse polarity input protection.
Separate driver oscillator circuit.
Separate driver oscillator rircuit.
Fully fused $D C$ and $A C$ circuits.
2 year guarattee.
DD $/ 1.100$ watts $8^{\prime \prime} \times 6^{\prime \prime} \times 6^{\prime \prime}$
DD $/ 2-150$ watts $8^{\prime \prime} \times 6^{\prime \prime} \times 6^{\prime \prime}$

SPECIAL CONVERTERS
In response to customers' requests we have
included this range.
included this range.
All units are assember in tough ABS cases
and

Terms of Business:
 Carriage U.K. inclusive in prices. Overseas charged at cost F.O.B. Cheque, P.O., cash charged at co.st F.O.B. Cheque, P.O., cash with orders. Official orders welcome but priority given to cash customers. Cased elct. priority given to coshh customers. Cased, ent., sizes subject to alteration. Delivery: some sizes subject to ateration. Delivery. some goods sex-stock, other up to 28 days average. Quantity discounts with pleasure. goods ex-stock, others sp teasure. Quantity discounts with pleasur

INVERTERS ARE OUR BUSINESS

DC TO DC CONVERTERS

Simple but effective low cost range of
converters. Assembled on small aluminium sheets
with no frilly extras. with no frilly extras.
Combined driver/output transformer. Input protected to act as free floating to
any polarity, output via Ply leads.

S/1-4v DC in /9v 500 ma	£14.00
S/2-4v DC in / 12 v 500	£14.00
$3-4 \mathrm{vCC}$ in $/ 15 \mathrm{v}$	
4-4v DC in /18v	
S/5-4v DC in /24v 500 ma	
S/6-6v DC in/9v 500 ma	£14.00
$\mathrm{S} / 7-6 \mathrm{v}$ DC in /12v 500 ma	
$\mathrm{S} / 8-6 \mathrm{~V}$ DC in / 18 v 500 ma	
9.6 vDC in/24	
$0-6 \mathrm{~V}$ DC in $/ 30$	
$11-6 \mathrm{vDC}$ in / 40	£14.00
S/12-6v DC in /50v 300 ma	£14.00
$\mathrm{S} / 13-9 \mathrm{v}$ DC in $/ 12 \mathrm{v} 500 \mathrm{ma}$	
9v DC in/18v 500 ma	
S/15-9v DC in /24v 500 ma	
$16-9 \mathrm{vDC}$ in /30v 500 ma	
$17-9 v \mathrm{DC}$ in/40v 50	ع14.00
24	
in/30	
S/20-12v DC in/40	
S/21-12vDC in $/ 50 \mathrm{v} 300 \mathrm{ma}$	ع14.00
22-12v DC in/50v 750 ma	
$23-12 \mathrm{vDC}$ in/60v 300	
24-12v DC in/60v 75	
12 vDC in/70v 300	
DC in/70	
S/27-12v DC in $/ 80 \mathrm{v} 300 \mathrm{ma}$	ع14.00
$28-12 \mathrm{vDC}$ in/80v 7	
DC in	
S/30-12v DC in/100v 300 m	

AUTO/MAINS INVERTER UNITS These units maintain a sourre of AC mains
power throughout any interuptions in the
omestic supply. Assembled in smart instru domestic supply. Assembled in smart instru-
ment cases the units incorporate a built-in ment cases the units incorporate a built-in
inverter battery charger and fulla automatic
switching circuits. Ma ins input required switching circuits. Mains input required
$220 / 240 \mathrm{~V}$ AC. Mains output direct $220 /$
240 v AC. Inverter output $220 / 240 \mathrm{~V}$ AC. 240 VAC . Inverter output $220 / 240 \mathrm{v} \mathrm{AC}$.
$0 / \mathrm{F}$. Frequency $50 \mathrm{~Hz} \pm 4 \%$. 2 year guaranInverter smoothed square wave out. Panel
voltage meter indicator. AC output via 13 A voltage meter indicator. AC output via 13 A
type socket. DC \& A Circuits fused.

 AM $/ 6-12^{\prime \prime} \times 6^{\prime \prime} \times 5^{\prime \prime}$
A

State input required. 12 v DC or 24 VDC .

> INVERTER PANELS

A range of simple aluminium sheet assembled units without any frilly extras, inputs and
outputs by polarity coloured leads. 20 w to 10 w models use a combined
driver /output transformer. PA $/ 1-6 \mathrm{VDC}$ in $/ 240 \mathrm{VAC} 20 \mathrm{w}$
$\mathrm{PA} / 2-6 \mathrm{vDC}$ D $/ 240 \mathrm{VAC} 40 \mathrm{w}$

\qquad £15.00
ع18.00
 $\begin{array}{ll}\mathrm{PA} / 7-24 \mathrm{VDC} \mathrm{in} / 240 \mathrm{VAC} 20 \mathrm{w} & \mathrm{E} 16.0 \\ \mathrm{EA} / 8-24 \mathrm{vDC} \text { in } / 240 \mathrm{v} \text { AC } 50 \mathrm{w} & \mathrm{E} 19.0\end{array}$ PA $/ 9-24 \mathrm{vDC}$ in $/ 240 \mathrm{vAC} 1$.
All units are approx $4^{\prime \prime} \times 3^{\prime \prime}$.
Square waveform
50 Hz or 6 OHz type $\pm 6 \%$.
AC output voltages are off load.

ELONHURST LIMITED

104A BRACKENBURY ROAD, LONDON, W. 6 Telex: 8954665. GITS G ELECT.
TEL: 01-748 5778

PRICES INCLUDE CLEANING, CALIBRATION, TOTAL LABOUR CHARGES FOR REPAIR WORK. the price does not include the replacement of components, movements or cases

MARTIN ASSOCIATES (ELECTRONICS) LTD., 34, CROWN STREET, READING.BERKS

POWER AMPLIFIERS

NEW
 PRODUCTS 700 watts-£350*

introduction offer only

Amplifier Modules

MONOGRAM PROFESSIONAL AUDIO, 281 Balmoral Drive, Hayes, Middx. ENGLAND TEL $\$ 1$ I

DICITRL FREQUENLY TUNIIG SVSTEM5

66 where can I get a Universal Bridge that's good enough for the labs, simple to use and tough enough for the shop floor and doesn't cost a fortune?g9
"Here"- AVO's Universal Bridge B150 Mk. 3 gives you
measurement of resistance, capacitance, inductance accurate to 1%, can be used anywhere, it's battery powered. And anyone can use it, connections are simple and readings
easy to take - with no calculations that easy to take- with no calculations thanks to the mechanical
in-line digital display and interlocking units selector The B150Mk. 3 -for use in production quality control development labs-even at goods inwards. Tough metal cabinet, and the AVO guarantee of reliability, serviceability and accuracy, all at a price that's a pleasant surprise. From
good distributors everywhere good distributors everywhere.
fuller details of AVO's Universal Bridge B150 Mk 3 or for

Avo Limited, Archcliffe Road Dover, Kent. CT179EN.
I Thorn Measurement 202620 Telex: 96283

137 Standard Ranges in a variety of
sizes and stylings available for 10.14 days delivery. Other Ranges and

Full Information from:
HARRIS ELECTRONICS (London) 138 GRAYS INN ROAD, W.C. 1 Phone: 01/837/7937 ww-049 For FURTHER DETAILS

Your attention please!

MIL series amplifiers are designed and priced for installations in a wide range of applications including churches, schools,
restaurants, factories, shops and offices.

Each amplifier is available with input facilities for microphones and music sources six programme push button AM tuners or FM

One model incorporates automatic
switching to a battery supply in the event of power failure.

Such a versatile system can confidently satisfy your exact requirements.

Please tick as required.
For further information on this product \square
Complete range of sound equipment

Name
Position
Attach this coupon to your letter heading and send to:
MILBANK MILLBANK ELECTRONICS GROUP LIMITED, MARKETING SERVICES UNIT, MILLBANK P.O. BOX 33 , UCKKFILD, SUSSEX. ENGLAND

Microwave intruder detector - 1

Design with good interference rejection and noise monitoring
by K. Holford, C. Eng., Philips Research Laboratories

This design provides a simple but

 effective circuit which uses a cycle being triggered by short mover the alarm or pulses. The circuit has excellent interference rejecting properties. A noise monitoring circuit is described in part 2 so that the alarm can be set ow false-alarm probability. A simple novel design of stabilizer allows the nominal 12 V supply to have one volt or more of ripple beforeThis design is suitable for the Mulla L8960 microwave module, a complete the microwave generator (Gunn diode) nd a mixer diode to produce the audio Doppler beat signal in response to radial movement. It requires a power supply of module has Home Office approval and has featured in a previous Wireless World design ${ }^{1}$ in 1977. That paper and reference ${ }^{2}$ 'provide useful background The present design is the result of The present design is the result of in small radar design and has laid emphasis on false-alarm immunity reliability and simplicity, and the use of a single nominal 12 volt supply for the (MID). The lowest usable supply volrage is important to preserve standby battery life. The circuit shows 11 volts although this can be reduced to ten by circuit settings, and to 9.5 V by selection The great advantage of the MID apart from its apparent ease of installasion, is its constant vigilance. It can be and then turn off if there is minutes movement. This contrasts with further and-window switch system which, in simple installations, is likely to be out of action if disturbed. It may be silenced to wait the owner's return.
and its installation must be of the MID with knowledge of the likely causes o false alarm. This can be simplified, and reliability improved to the point which makes it a very popular device, by pro circuit that indicates when the alarm has an unreliable setting. Super sen
itive MID are more likely to false
arm than less sensitive ones. Eve hose MinDs having good circuit design which is no more than for a sensitivity ensure intruder detection. It is the set ing of this sensitivity and the monitoring of the safety factor once it is et that is the key to a reliable installion. Some manufacturers "burn in" they are reliable, but this is lost if there is serious unsuspected movement in the vicinity of the MID installation. Part 2 describes a false alarm circuit for False alarms attributable to itself, particularly when set for miD sensitivity, can be due to amplified thermal noise, such as $1 / \mathrm{f}$ semiconductor noise, to vibration, or simply an which gets into the signal circuits. The MID should contain protection against both power supply pulses and signals caused external short transient movements.

Setting-up procedure for this intruder alarm
circuit tine circuit (Given in part 2 c can be simplified using
an additional indication circuit monitors noise level and indicates when safety monitors noise level
margin is reduced.

False alarm due to causes external to
the MID can include those nearby equipment with an internal cooling fan and an aperture through which the radiation can pass and then return with a Doppler (movement) shift. In fact just an amplitude modulation of fluorescent lamps, when switched on, ionizes to become a fluctuating reflector which can easily cause an alarm. Other causes include pedestrian movealarm. Microwave radiation can the through glass, albeit with a considerable attenuation, as well as through dry plasterboard. Do you keep pigeons in your loft as well as a pig in the bath?
Most industrial emitting diode to show when it is detecting movement during setting up. None, to my knowledge, provide on to show that the noise, including that due to spurious movement, is too high
for reliability at the chosen sensitivity setting in the particular environment in which the MID must work. This is cove red in part 2 .
The starting point for an alarm design must be the power supply, its noise an helps to know that the most critical

aspect of this is going to be the proviion of the supply to the Gunn diode. power will be modulated and in turn will result in this ripple appearing at the mixer output. This is caused by the microwave power used for the mixing he mixer If this is not satisfactory the est of the design is suspect. The mix output signals are in any case caused by an amplitude modulation of the mix power when the return signal, shifted by the Doppler difference, is added to
the local signal used for mixing. ${ }^{2}$ This return signal is many orders of mag nitude less than that used for mixing and hence the modulation of microwave power due to the power supply has to be sensitivity is limited by the mixer noise and the design should therefore aim not to artificially increase this.
In the past Gunn power supplies have not received they deserve: neither liter me that they deserve; neither haves volunteered information on the sen sitivity to ripple. A need exists for this to be included in the data. The ripple output from the mixer will depend first on on the amount of microwave power being used for mixing and the operating condition of the mixer. For instance, if low level mixer is being used, such as in he Mulard CL8860, there will be supp enhance sensitivity. But a mixer using about 0.5 mW or more of power will often just have a $1 \mathrm{k} \Omega$ resistor across the mixer to cause a current flow. Figure hows these two types together with the Ripple
factor is defined here as the hat acrople voltage from the mixer to ha cross the Gun diode. The micro CL8960 is only about 0.02 mW but will with a small reflector in front of the module so that ripple factor may be measured for other mixing powers Such powers can occur if the module root is covered and sometimes intent tonally by means of a 3 mm screw or so part 2), and used to optimize signal-tonoise ratio with a particular amplifier or circuit design. ${ }^{\text {. }}$
The actual microwave power in use is when the microwave signal is turned on. Thus setting up instructions can specify the type of bias circuit used and the direct voltage that should be ex pecten. (Special antistatic precaution avoid mixer damage, given later.)
*The intended optimum mixer power will occur naturally if the module is bolted to plate, such as the side of a box, and the other side of the aperture is fitted with the shroud shown in Fig. 10 which comes with it.
Table 1. Ripple transfer factor measured for microwave modules

Mixer	CL8960	CL8960	CL18960	CL8960	In-line module
Ripple factor	0	0.16	0.025	0.06	0.08
Direct voltage (N)	0.300^{*}	0.26	0.00	-0.4	-0.2

Zero microwave power

Fig. 1. Microwave part of the design is contained in Mullard CL8960 module (left). Direct
current bias is not needed for in-line module, available shortly

Gunn diode power supplies

Integrated circuit regulators in general dor G mn supplies At leans they are not generally being released against a suitable specification. Typical is the 7808 from the 7800 series. This has an 8 V
output and is suitable for use with a 7.5 output and is suitable for use with a volt diode. The guaranteed minimum
ripple rejection is $56 d \mathrm{~dB}$ and the data
shows a supply of 14 volts. This rejection shows a supply of 14 volts. This rejection
is not even enough for a typical CL8960 not even enough for a typical Cl8960 a When tested with a 150 mA output a 12 volts. Noise output of $13 \mu V$ r.m.s. was circuit made from discrete components. Common practice in providing Guin supplies is to use a zener diode to set the flower to provide the power. In the circuit of fig. 2 the current bias for the ever diode as much as is practical hearing in mind possible problems due to eectrolytic leakage current. The 47μ F capaciacross me zener contributes to the decoupling but only contributes
above about 100 Hz .
This design is based on the use of 7.5 volts, as
this in proves low temperature reliability. Pres.
lure tor the lowest possible working voltage has
 caused a $7.0 V$ release specification. Also more
recent work has improved the Gunk diode. If
7 IO volt working is essential it can he used.

The 1000 μ c capacitor has a typical impedance at 100 Hz of 2 ohms (no maximum quoted) at $0^{\circ} \mathrm{C}$ and the zenger diode oltage across the zener is $2200 / 2 \times$ $000 / 20 \times 20=5500$ or 94 dB the splitting of the chain increased decouling by about 30 dB . This 94 dB is much more than can be achieved with an output as can be seen from Table 2 .

Fig. 2

g. 2.

Table 2. Ripple rejection with circuit of Fig. 2.

The ripple rejection was found
5 volts above the zener voltage
2.
 ,

[^0]

Fig. 3.

The advantage of the 748 over the 741
is that the 30 pF capacitor can be in is that the 30 pF capacitor can be in
creased if a loop stability problem is experienced. A 741 of different manufacture did oscillate when the extra 3.5 mA
load was applied, although with the load was applied, although with the 74
the capacitor could be reduced to before this occurred. The manufacturer is the most important factor in choosing an
i.c. In this instance a National 748 performed five samples of a more expens ive LM 308 equivalent from manufacturer (2), both in rejection and minimum wor
king voltage. king voltage
Finally a tww
Fig. 4 is shown in Fig. 5 with some more
ig. 4.

odules is shown in Table 1. In both Table 3. Use of op-amp as shown in Fig. 3 improves ripple rejection. IC type Noise No of Minimum Minit uses fewer components than in the data sheet. The direct voltage working point should be chosen for best noise figure to be described this is is about half the non-microwave bias. For a 300 mV diode, a variation from 90 to 270 mV causes a 1.5 dB worsening of noise figure and some
Measurements show that a factor of about 0.02 should be used for design with the CL8960 and the more stringent 0.08 or more for the in-line design. The allow for future microwave module development.
If the noise from the module is naturally $5 \mu \mathrm{~V}$ and the design aim is to hold contribution on its own must be not more than about $2.5 \mu \mathrm{~V}$. If it contributed $5_{\mu} \mathrm{V}$ the overall noise would degrade by dB.
The rejection required of the power supply is therefore 1 pk -pk with ripple factor of 0.1 . Even a typical CL8960 is going to require 69 dB if ripple factor is 0.02 .
The 83 dB minimum ripple rejection actor is achieved (see "Gunn powe upplies") so as to allow 10 pk-pk on the ripple factor of 0.1 As a typical CL 8960 has a factor of 0.02 it could tolerate 5 V pk-pk ripple, although due to the vol ge swing the minimum supply voltag about 13 V .
It might be thought that battery supplies would not need ripple rejection However, this ignores practical points
like switching-on and switching-off

Table 5. Two-transistor version for higher currents or poor i.cs			$\begin{array}{l}\text { However, this ignores practical points }\end{array}$		
IC type	$\begin{array}{l}\text { Noise } \\ \text { output }\end{array}$	$\begin{array}{l}\text { No. of } \\ \text { samples }\end{array}$	$\begin{array}{l}\text { Rejection } 1 / 2 \\ \text { l2V supply }\end{array}$	$\begin{array}{l}\text { Supply min. } \\ \text { for 83dB }\end{array}$	$\begin{array}{l}\text { like switching-on and switching-off } \\ \text { surges with long leads, possible bad } \\ \text { connections due to corrosion and }\end{array}$

Table 5. Two-transistor version for higher currents or poor i.cs			$\begin{array}{l}\text { However, this ignores practical points }\end{array}$		
IC type	$\begin{array}{l}\text { Noise } \\ \text { output }\end{array}$	$\begin{array}{l}\text { No. of } \\ \text { samples }\end{array}$	$\begin{array}{l}\text { Rejection } 1 / 2 \\ \text { l2V supply }\end{array}$	$\begin{array}{l}\text { Supply min. } \\ \text { for 83dB }\end{array}$	$\begin{array}{l}\text { like switching-on and switching-off } \\ \text { surges with long leads, possible bad } \\ \text { connections due to corrosion and }\end{array}$

generate voltages via the finite output impedance of the power supply. A low impedance supply eases the problem, as do lightly loaded amplifiers which do not generate large signal currents. After this the amplifier should
A suitable amplifier circuit is shown

Fig. 6. Ripple may be due to signals originating from sources internal or
external to the power supply. Currents shown can generate voltages through the output inpedance of power supply, hence the need for a low impedance supply and lightly-loaded amplifiers.

Fig. 7. Beat frequency amplifier with mixer bias current supply was designed to tolerate sup
five ohms.
supply imedas designed to tolerate which is much higher than needed for a stabilized supply, but often a good design does not look very different from a poor one at first sight. The main point is
not to inject signals from the supply via not to inject signals from the supply via
the networks which supply amplifier bias. The Gunn power supply can be used to power the amplifier and as this has a very low output impedance of about 0.05 ohms this will greatly help
the design. For instance, some of the decoupling of the input bias chain can decoupling be omitted.
Starting at the left hand side the resistor chain R_{1} and R_{2} provides well decoupled current bias for the mixer, against the input charging up when the mixer is absent which carries the risk of mixer damage when it is re-connected. Even without microwave bias the mixer voltage is only 0.3 V which is below diode conduc.
The second resistor chain biases the op-amps to the best point for a symmetrically-clipped sinewave output on overdrive. With the use of the punn power supply
The first op-amp has a voltage gan of 100 and the second 300 , a total of 90 dB ignoring impedance differences. Gain of the second can be reduced 50 times with R_{9}. Because radar range varies as the
fourth power of power gain, this is equivalent to a range change of seven times. For a lower range of sensitivity the first op-amp $330 \mathrm{k} \Omega$ resistor can be reduced.
The second op-amp is directly connected to the first and the circuit is both very economical in the use of components and has good ripple rejection properties. No economy is sacrificed in performance.
The amplitude-response of the amplifier is suitable for an MID. The low
frequency cut-off is controlled by C_{5}

7
TH ,

1 .

IC type	Noise output	No. of samples	Rejection $1 / 2$ $\mathbf{1 2 V}$ supply	Supply min. for 83 dB
7481	$3.5 \mu \mathrm{~V}$	10	100 dB	10.07 V
748^{2}	$3.5 \mu \mathrm{~V}$	20	99 dB	10.62 V

From the previous results it seems fair to expect that the circuit of Fig. 4 could be put into production with a minimum wor king voltage of 10.5 V and a ripple rejec
tion of 83 dB , tion of 8318 , provided the i.c. manufac-
turer is selected with care, and even better if $B D 135 \mathrm{~s}$ arae evailable with $h_{F \in}$ minimum
of 80 . A considerable percentag of the of 80 . A considerable percentage of the
products will work satisfactorily down to supply voltage of 10 V .
Measurements were made with a zener
diode selected for an accurate 7.5 V vol diode selected for an accurate 7.5 V vol
tage. Any higher voltage requires the lage. Any higher voltage requires the
supply minimum to be raised by the
difference difference. But also, the use of the 7.0 V
specified in the C 8960 . specified in the CL8960 data would allow
a reduction of 0.5 volts. Thus a 10.5 volt minimum could be met, even with a poor

Note: 784 requires 30 pF compensation
capacitor.
capacitor
and C_{8}. The input capacitor plays little
part as it was chosen large for low noise part as it was chosen large for low noise
reasons. At maximum gain C_{5} and C_{8} and their associated resistors cause the esponse to be -3 dB at 11 Hz which corresponds to a radial velocity o
$15.8 \mathrm{~mm} / \mathrm{s}$ or $0.6 \mathrm{in} / \mathrm{s}$, assuming the UK MiD frequency of 10.687 GHz . Range will be roughly proportional to velocity elow this due to the 12 dB per octave esponse of the two time constants
With reduced gain R_{g} will reduce th fall-off of the second time constant and response will fall with speed more slowly.
The ability of the radar to reject faster-than-walking-speed targets is hose of the capacitor across each opmp feedback resistor. With 5.6 nF apacitance across 330 kohm the -3 dB point per stage is at 86 Hz or $1.25 \mathrm{~m} / \mathrm{s}$ at twice this velocity and decrease inversely proportional to velocity thereafter
Amplifier noise was measured with both a mixer connected and a 1 kohm
substitute. At the time the amplifier had only one third of the size of feedback capacitors and an upper response of approximately 240 Hz . Noise voltage equivalent input for the resistor varied from 0.3 to $0.6 \mu V$ r.m.s. depending on by the usual averaging "r.m.s." meter. On an oscilloscope the larger figure corresponded to $4.4 \mu \mathrm{~V}$ pk-pk equifrom the microwave module and makes the exact value inimportant.
Amplifier gain required can be seen from the $5 \mu \mathrm{~V}$ r.m.s. expected noise input and the 2 V pk-pk output from the opalarm level in the circuit which follows the op-amps. This is 103 dB and so 90 dB offers a reasonable safety factor. The threshold at which the circuit following the op-amps just begins to work is 1.5 V Fluo
Fluorescent lights can interfere with the operation of an MID and the use in unless a circuit is fitted with rejection capabilities. The ionized gas fluctuates
at 100 Hz and can induce a radar. With just one lamp in the dominating this may be substantially at 100 Hz but with several lamps a strong The phase of the may also be present. The phase of the signal relative to the due to differences in target distance The design of a suitable comb filter is not within the scope of this article. Low-pass filters are only marginally design, because of the loss of response o all but slow movement
In the past the MID design has paid far too little attention to protection against being set off by interference several. To some extent this is due to lack of designers with both electronic

Fig. 8. Normal practice is to have a relay energized so that power failure can be timer (fed by T_{r} or with T_{5} colle area a 55 connected to pin 2) could be arranged a relay hold-off atter a short interval. to short For use with a 555, (A) connects to OV, the diode is omitted, T_{4} collector becomes pin 3 and
circuit design experience and micro Radar wavelength at 10.687 GHz 28 mm and one beat frequency cycle is produced by the mixer for each 14 mm of radial movement toward or away from process is pussible counting or simila which requires a certain distance movement before an alarm is set off This is not complete proof against much shorter oscillating movements whic can wobble the vector ${ }^{2}$ and produce protection against multiple interference pulses of a few at a time and agains single short infrequent movements. A memory can be provided to defeat a and the proportioning of the memory time versus degree of protection pro vided is a matter for design considera tion.
In
In the circuit shown the capacitor C_{1} is used as a bucket to charge C_{12} with radial movement distance required to charge C_{12} to about half the supply voltage and so set off the alarm by causing Tr_{2} to conduct, is determined by the ratio 600 mm or 24 inches will trip the circuit shown. Capacitor C_{11} loses some Tharge voltage due to the diodes. The memory time constant is con-
trolled by R_{13} across the trolled by R_{13} across the capacitor and i
about 47 seconds with a electrolytic - preferably tantalum for stability. Thus 37% of any previous movement is still remembered after 47 seconds. Values of C_{12} and R_{13} may be leakage-current is paid due regard In practice any changes are unlikely to be more than three times. For instance 9 ches of movement is probably good nough for the most critical user and beating.
Transis
ent to ensure a bootstrap arrangebucket does not fall the charge per hen C_{12} charges fall off appreciably detecting an intruder and a 7.5 volt

WIRELESS WORLD EEBRUABY 1980 amplifier supply the output of the opIn use the output transistor Tr_{3} is intended to short the base-emitter junction of a relay transistor, such as in Fig. 8. It is normal with alarms to have
the relay energized when the circuit is the relay energized when the circuit is working and no alarm condition so that Tr_{3} will sink several mA and is very conservatively used at 2 mA . It could be ten with little risk.
Alternatively, Tr ${ }_{4}$ could operate a 555
timer, or itself be a 555 timer in timer, or itself be a 555 timer in which be pin 2. The 555 appears to have a built-in diode suitable for relay driving, although this is not stated in the data. expires if there is no further movement is a useful feature for avoiding a noise complaint and leaves the system ready to detect the next disturbance. For a high security area the 555 would be trol as in Fig. 8. Thus an alarm is given if wires are cut.
Both the amplifier on its own and complete with the microwave module rejection. The amplifier at that time used smaller feedback capacitors and had an upper -3 dB point per stage of 240 Hz . Thus ripple rejection will be generally better above 100 Hz than the figures shown.

Table 6. Typical ripple rejection for Fig. 7 and module
$\begin{array}{llllll}\text { Ripple frequency }(\mathrm{Hz}) & 10 & 50 & 100 & 500\end{array}$
$\begin{array}{llllll}\text { supply (mV pk-pk) } & 55 & 55 & 70 & 500\end{array}$
$\begin{array}{llllll}\text { supply (} \mathrm{mV} \text { pk-pk) } & 36 & 36 & 45 & 500\end{array}$

These are typical rather than worst case ripple figures but not too important as the use of a stabilizer with only 30dB rejection would allow a 1 V pk -pk ripple
on the stabilizer input. Thus, pected, the performance is limited by the less tolerant microwave circuits. With the microwave module fitted and the stabilizer to be described a IV pk-pk
ripple over the frequency rang loHz ripple over the frequency range 10 Hz to
1 kHz had no effect with a supply voltage of 10.5 V . Also with a 12 V supply the ripple had to be increased above 5 V pk-pk before the ripple could be seen in the noise. Removal of C_{1} and C_{2} from Fig. 7 when the circuit was powered
To be continued

References

1. M. W.Hosking, Microwave intruder alarm. August pp.
2. Holford K. Doppler Radar With Sens

Circuit analysis by small computer

Tedious though flexible matrix technique lends itself to computer calculation

As the price of dosktop computers as another piece of lab be regarded along with oscilloscopes and analysers. Using such machines designs may be checked and components "tweaked" for optimum performance, without any danger of
damaging expensive components.

This article shows the principles of computer circuit analysis; a secon shows how a Commodore Pet can be used to "bread-board" circuits ranging from micro to audio frequencies. A mon this approach must look in creasingly attractive to professiona users in industry and education, as well s to non-professionals.
Many textbooks deal with linear wo-port analysis; because of thei duction to a far more powerful multiport technique.
Consider the two-port network o

Fig. 1
as independent variables and the remaining two as the dependent variindependent variables and assuming independent va
linearity, write
$I_{1}=y_{11} \dot{V}_{1}+\dot{y}_{12} V_{2}$
$I_{2}=y_{21} V_{1}+y_{22} V_{2}$
or in matrix form

$$
\binom{I_{1}}{I_{2}}=\binom{y_{11} y_{12}}{y_{21} y_{22}}\binom{V_{1}}{V_{2}}
$$

where the y -parameters have the dimensions of admittance, the reciproca
of impedance. Figure 2 gives the y

Fig 2
arameter equivalent circuit of any linear two-port network and Table

\equiv

Fig. 3
terminated in a load admittance Y_{L} and driven from a source of admittance Y_{S}. wo ports as in Fig 3 . It is immediately bvious from the equivalent circuit representation that the overall two-por network (formed by the combination of networks A and B) has the following y-parameters
$y_{11}={ }_{A} y_{11}+{ }_{B} y_{11} \quad y_{21}={ }_{A} y_{21}+{ }_{B} y_{21}$ $y_{12}={ }_{A} y_{12}+{ }_{B} y_{12} \quad y_{22}={ }_{A} y_{22}+{ }_{B} y_{22}$ The overall y-parameters are simply the sum of the parts. It is this property of hall now generalize: the property o adding small matrices to describe the whole circuit, i.e. $[y]=\left[y_{A}\right]+\left[y_{B}\right]$
Indefinite admittance matrix The indefinite admittance matrix or any node in the circuit to the voltages at the nodes, where voltages are referenced from some node external to he circuit. This is best illustrated by an

where $Y_{01} Y_{02} Y_{12}$ are admittances.
example; consider Fig. 4. You can see hat
 $I_{1}=-Y_{01} V_{0}+\left(Y_{01}+Y_{12}\right) V_{1}-Y_{12} V_{2}$ $I_{2}=-Y_{02} V_{0}-Y_{12} V_{1}+\left(Y_{02}+Y_{12}\right) V_{2}$
$\left(\begin{array}{c}I_{0} \\ I_{1} \\ I_{2}\end{array}\right)=\left(\begin{array}{cc}\left.Y_{01}+Y_{02}\right)-Y_{01} & -Y_{02} \\ -Y_{01}\left(Y_{01}+Y_{12}\right)-Y_{12} \\ Y_{02} & -Y_{12} \\ Y_{02}+Y_{12}\end{array}\right)\left(\begin{array}{c}V_{0} \\ V_{1} \\ V_{2}\end{array}\right)$ Notice that the YF matrix exhibits a
great deal of symmetry. It may be

Table 1
$Z_{\text {in }}=\frac{y_{22}+Y_{\mathrm{L}}}{D_{\mathrm{y}}+y_{11} Y_{\mathrm{L}}} \quad A_{\mathrm{v}}=\frac{V_{2}}{V_{1}}=\frac{-y_{21}}{y_{22}+Y_{\mathrm{L}}}$
$Z_{\text {out }}=\frac{y_{11}+y_{\mathrm{s}}}{D_{\mathrm{y}}+y_{22} Y_{\mathrm{s}}} \quad A_{\mathrm{i}}=\frac{I_{2}}{I_{1}}=\frac{y_{21} Y_{\mathrm{L}}}{D_{\mathrm{y}}+y_{11} Y_{\mathrm{L}}}$
where $D_{\mathrm{y}}=y_{11} y_{22}-y_{12} y_{21}$
shown rigorously* that for any passive

- Y is the sum of all admittances connected to node n n all ad Y_{nm} is minus the sum of all ad-
mittances connecting the n to the m node (this applies to active circuits as well as it derives from conservation of charge) These four ${ }^{\text {en }}$
These four properties of the YF matrix allow any passive network to have its
YF matrix written down by inspection These same properties also allow a computer to create the YF matrix with great ease; only the nodes that com-
ponents lie between and their value need be known.

Abstract

The technique in summary For passive networks rote application of the fous rules produces the YF matrix. For active networks use Table 2 to find the YF matrix. For a network with active and passive cor a network with active and passive components simply add the individual Y Y matrices obtained by considering the passive and active components on their Own. YF matrix may be reduced to a simple Table 1 gives the impedances and gains of Table 1 gives the network.

Reduction of the YF matrix
Fig 5
the YF matrix concerning impedances and gains (as for the two-port network) is to note that the currents in the YF representation give the total current flowing into a particular node. By kero for all internal nodes, i.e. nodes not connected to the input or output of the network.
To demonstrate by means of an example, see Fig. 5. You can see that
$\left(\begin{array}{c}I_{0} \\ I_{1} \\ I_{2} \\ I_{3}\end{array}\right)=\left(\begin{array}{cccc}Y_{01}+Y_{02}+Y_{03} & -Y_{01} & -Y_{02} & -Y_{03} \\ -Y_{01} & Y_{01}+Y_{12}+Y_{13} & -Y_{12} & -Y_{13} \\ -Y_{02} & -Y_{12} & Y_{02}+Y_{23}+Y_{12} & -Y_{23} \\ -Y_{03} & -Y_{13} & -Y_{23} & Y_{03}+Y_{13}+Y_{23}\end{array}\right)\left(\begin{array}{c}V_{0} \\ V_{1} \\ V_{2} \\ V_{3}\end{array}\right)$
Because $I_{3}=0$ eliminate V_{3} by putting

$$
\begin{aligned}
& V_{3}=\left(Y_{03} V_{0}+Y_{13} V_{1}+Y_{23} V_{2}\right) / \Sigma . \\
& \text { where } \Sigma=Y_{03}+Y_{13}+Y_{23}
\end{aligned}
$$

For a two-port network measure voltage from node 2 (i.e. $V_{2}=0$). Submatrix:

$$
\binom{I_{0}}{I_{1}}=\left(\begin{array}{cc}
\mathrm{Y}_{02}+Y_{01}+Y_{03}-Y_{03}{ }^{2} / \Sigma & -\left(Y_{01}+Y_{03} \cdot Y_{13} / \Sigma\right) \\
-\left(Y_{01}+Y_{13} \cdot Y_{03} / \Sigma\right) & Y_{01}+Y_{12}+Y_{13}-Y_{13}^{2} / \Sigma
\end{array}\right)\binom{V_{0}}{V_{1}}
$$

$$
\begin{aligned}
& \text { So by equating all internal currents to } \\
& \text { zero we have found the two-port y } \\
& \text { parameters, and using Table } 1 \text { we de } \\
& \text { duce the impedances and gains of the } \\
& \text { network. }
\end{aligned}
$$

where Y_{01} etc. are admittances.

WIRELESS WORLD, fEBRUARY 1980

YF matrix for active

components

Consider the transistor in Fig. 6. From the data sheet we can quickly discover its common-emitter y-parameters, and collector currents into the bas (referenced from the emitter). Now even for active components conserva tion of charge is obeyed so by rule thre the YF matrix for the transistor is
$\left(\begin{array}{ccc}y_{\mathrm{ie}} & y_{\mathrm{re}} & -\left(y_{\mathrm{ie}}+y_{\mathrm{re}}\right) \\ y_{\mathrm{fe}} & y_{\mathrm{oe}} & -\left(y_{\mathrm{fe}}+y_{\mathrm{oe}}\right) \\ i-\left(y_{\mathrm{ie}}+y_{\mathrm{fe}}\right) & -\left(y_{\mathrm{re}}+y_{\mathrm{oe}}\right) & \Sigma\end{array}\right)$
where $\Sigma=y_{\mathrm{ie}}+y_{\mathrm{re}}+y_{\mathrm{fe}}+y_{\mathrm{oe}}$
Table 2 gives the YF matrices for othe ommon two-port networks.

$$
\int_{3}^{2}\left(\begin{array}{ll}
y_{\mathrm{ie}} & y_{\mathrm{re}} \\
y_{\mathrm{fe}} & y_{\mathrm{oe}}
\end{array}\right)\left(\begin{array}{ll}
y_{11} & y_{12} \\
y_{21} & y_{22}
\end{array}\right)
$$

YF matrix for active and

 passive componentsNow that YF matrices of active and passive networks can be created the "parallel networks add y-parameters" more general YF matrix. The followin example illustrates the techniques we

$$
\text { Fig. } 6
$$ can now use

It is because this technique is so flexible, handling any configuration of components, yet is a rote procedure with lation, that it is ideally suited to the computer.
A second article will outline a program based on the YF matrix and discuss elling techniques.
*High Frequency Amplifiers by R. S. Carson.
Wiley Interscience.

The overall YF matrix is then
$\mathrm{YF}=\mathrm{YF}_{1}+\mathrm{YF}_{2}+\mathrm{YF}_{3}$
The tedious but simple calculations to reduce the YF matrix are best left to a computer; these calculations will yield
the impedances and gains of the circuit.
and
represent the circuit as a paralleling of

here $\Sigma_{B}={ }_{B} y_{i e}+{ }_{B} y_{r e}+{ }_{B} y_{o e}+{ }_{B} y_{\mathrm{fe}}$

Line impedance Z_{0} length l at a frequency where $h=2 \pi / \lambda$

$$
\begin{aligned}
& \text { given } y_{\mathrm{e}} \text { parameters } \\
& \mathrm{YF}=\left(\begin{array}{ccc}
y_{\mathrm{ie}} & y_{\mathrm{re}} & -\left(y_{\mathrm{ie}}+y_{\mathrm{r}}\right) \\
y_{\mathrm{e}} & y_{\mathrm{oe}} & -\left(y_{\mathrm{fe}}+y_{\mathrm{oe}}\right) \\
-y_{\mathrm{ie}}-y_{\mathrm{fe}}-y_{\mathrm{re}}-y_{\mathrm{oe}} & \Sigma
\end{array}\right) \\
& \text { where } \Sigma=y_{\mathrm{ie}}+y_{\mathrm{re}}+y_{\mathrm{fe}}+y_{\mathrm{oe}}
\end{aligned}
$$

Adaptable anatomy for

a.t.e.

A new form of integrated automatic tes
equipment, the GRADUATE unveiled by its equipment, the GRADUATE, unveiled by it at the recent Brighton a.t.e. conference offers the central advantages of "virtua,
instrumentation" and "reconfigurability, instrumentation" and "reconfigurability.
Although it will have to live down a laboured cap and gown presentation (it forms the " $"$ " in the name whenever a mention occurs in
the technical literature headings) the facil the technical literature headings), the facil
ities lurking behind these two terms are quite real. "Virtual instrumentation" involves dis-
pensing with conventional test instruments, using instead software-combined modules, with the intention of simplifying measure ment and readout, and adapting easily to
different test requirements Checks are by the a.t.e. circuits and the results fed to the central v.d.u., which also displays simulated front panel controls, the instrument being
simulated depending upon the way in which the a.t.e. has been "configured" by the soft ware. A set of functional modules carries out the work and comprises three main sections,
1.f., r.f., and digital. These modules are in i.f., r.f., and agitarne composed of four
serte into a kernel composin sheleves, each of which has eight injection
mouldings capable of hold mouldings capable of holding one double or
two single modules. Matching connections are provided at each module for service inputs, permitting any module to be inserted
anywhere in a kernel anywhere in a kernel.
The central contr
processor using bit-slice technology with a fixed microcode in pr.o..m. and an extension e.p.r.o.m. for controller firmware develop-
ment. The main memory is expandable in 32 K word steps up to 1 M word, and standard peripherals are a v.d.u. and keyboard, dual floppy-disc drive, line printer for program
development and strip printer for test results. Part of the control process is a calibration facility, deviations of each module from its "stan. performance being stored in calibration. This means that close-limit accuracy in the modules themselves is made unimportant and, assuming that the charac-
teristics of each module are stable, their stimulus outputs and measured inputs can be automatically corrected using the stored A s
A self-test facility provides for individual
modules and integral p.c.bs to be tested using resident programs, and a self-test module
permits on-line validation checks to be carried out during normal testing ensuring that any failure is not incorrectly attributed to the quipment.
three-phrase power distribed using a 25 kHz , is transformer-coupled and rectified on the interface power assembly board contained in distribute the supply to each module and another carries analogue signals between hign. For high frequency and fastedge way becomes inadequate and appropriate functional modules therefore have separate front panel connectors. A high-frequency,
three-switch design is available, working into he microwave region. Physically, the GRADUATE is made up by racks, the layout being deternind four 19 ne table top. In this way it can be tailored to satisfy particular constraints of space or can be laid out in a different shape to cater for
expansion, relocation or change of function.

WARC and the amateurs The ending, early in December, of the World Administrative Radio Conference at Geneva has left both prowith the major problem of sorting out exactly how they will fare when the new international table of frequency allocathe years ahead. The problem, as some of us foresaw, is that a divided and highly political conference has added such a protiferation of hootnotes to stroyed any remaining coherence of the frequency table, and indeed some observers go so far as to suggest that it has left world spectrum management many "resolutions" not directly reflected in the frequency table.
However, at least by comparison with some other services, radio amateurs in Region 1 (and also radio astronomers)
have emerged without having suffered any immediately obvious major calamities, indeed with a few useful gains, though nobody is prepared to admit being pleased with the results until the impact of various footnotes has been
more fully evaluated. Certainly it is clear that all amateurs have every reason to be grateful to the International Amateur Radio Union, the R.S.G.B. and a number of the other national societies for their long-term efforts to promote
better international understanding of the value of this hobby in both developed and developing countries.
The three new h.f. bands reached the international table: 10.100 to 10.150 MHz (about 29.6 metres); 18.068 to
18.168 MHz (16.5 metres); and 24.890 to 24.990 MHz (12 metres). It will, of course, be several years before these
become available to amateurs (possibly become available to amateurs (possibly 10.1 MHz will be the first to be transfer-
red to the amateur service) The red to the amateur service). The $10,14,18,21,24$ and 28 MHz should prove a useful incentive for further ionospheric research as well as making ong-distance operation possible at throughout most of the sunspot cycle. However the allocations are only 50 or 100 kHz wide and this will call for a high degree of self-discipline to avoid the worst effects of over-crowding, parti-
cularly if the bands are open for all modes of transmission. A small "Top Band" allocation (1810 to 1850 kHz) is now back in the International Table "from which it vanished in 1947, with the "footnote" that permits U.K. operation
between 1800 to 2000 kHz remaining attached to the table. In fact U.K. amateurs do not appear to have lost any
h.f. or v.h.f. frequencies, though it is too early to say whether or not operation on
some bands will be adversely affected by the many new footnotes.
According to returning delegates and WARC was the very disappointing attitude shown towards amateur radio by the Japanese delegation, despite that ountry's domination of the world Amateurs are also hoping that th active role taken at Geneva by the Chinese delegation may mean less use of 7 MHz amateur frequencies by broadcastibsty licensing country and possibly licensing of amateurs the new h.f. allocation for international broadcasting above 13.6 MHz is unlikely to extend beyond 13.8 MHz instead o the proposed 14.0 MHz and this give rise to the hope that a "cordon the megawatters and the amateur 14 MHz band.

From all quarters

North American amateurs on 50 MHz continued to be received in Europe daily likely that this month will prove have been the peak period of Sola Cycle 22. Even low-power stations were received with excellent signal-to-noise November 18 th Angus McK. On G30SS could still copy signals from VEIASJ near St. John, New Brunswick Canada when that station progressively educed power from 0.6 W to about 10 mW ! While most of the 50 MH Canada and the USA, on some days excellent signals were received from stations from Texas, California and even Mexico City. The original 144 MHz London repeater GB3LO at Crystal Palace ha installed in readiness for the change to the planned new four-repeater coverage of London and for which it will becom GB3SL (R2) with GB3NL at Enfield on these three repeaters being run by the UK FM Group (London); and GB3EL on R 0 at Havering. Some at least of these hould be in operation by the time thes notes appear. A new u.h.f. (70 cm) tone on channel RB6.
RACE (radio amateur club de l'es pace), a group of French amateurs mostly working at scientific research equipment for a French amateur satelequip
lite.

According to observations made by Aon Ham at Storrington, Sussex, sporadic E reception of signals between
40 and 80 MHz occurred on 48 day 40 and 80 MHz occurred on 48 days between May 19 and August 21, 1979 compared with 69 days in 1978 and 37
days in 1977, once again emphasising days in 1977, once again emphasising nection between solar activity and the nection between solar activity and There have been many different ver sions of how amateurs acquired thei "ham". According to a story in "Worl dradio", it began in 1911, and a station perated by three young members of the Harvard Wireless Club: Alber Hyman, Bob Almy and Reggy Murray
In the period before official licences were issued in the USA, they used a elf-assigned callsign formed from the nitial letters of their surnames, HAM Subsequently Albert Hyman was asked committee where his arguments against imposing licence fees on American amateur stations, such as HAM attracted nationwide publicity. It is a
plausible story, but there have been plausible story, but there have been
other accounts suggesting that like " 73 " (best regards) it all started much earlier in the days of land-line telegraphists.

In brief

An American amateur, Mike Vestal, WOYZS last year became the firs amateur to "Work All States" on the $430 \mathrm{MHz}(70-\mathrm{cm})$ band \ldots The 1980 be held at the "Winning Post." Twick enham, Middlesex on March 8 ... For thcoming 7 MHz contests organised by the R.S.G.B. comprise a telephony contest on February $2-3$ and c.w. on
February $23-24 \ldots$ Decisions taken at WARC, Geneva may make it possible for Class B licensees to use the 70 MHz band ... A long-range planning committee of the A.R.R.L. is attempting to
dentify "the opportunities and the identify "the opportunities and the
obstacles that lie ahead and what the eague should be doing to prepare for them" . .. P. Balestrini, G3BPT was due o be installed as the 46th president of he R.S.G.B. in the course of an evening flower Garden" on the River Thames on January 12th ... American amateurs are concerned at the very high failure rate of candidates sitting examinations or "Advanced Class" licences and have pointed out that the official FCC "study with the questions asked as a result of the updating of study guide and examination to different timetables.

PAT HAWKER; G3VA

An improved monitor

By J. H. Adams, M.Sc

Since publication of the scientific computer, correspondents have suggested several features to improve the performance. This new monitor incorporates many of those features and
includes a general expansion of the facilities available in BURP, including the routines for graph plotting. By restructuring the interpreter four extra functions, described in table 7, have been fitted into the three original have been removed, but these could be stored on tape, and the Creed 75 teleprinter interface has been replaced by a
standard 110 baud ASR/KSR interface The KSR machine is now che interface. The KSR machine is now cheaper and is
fairly standard whereas the 75 may have different speeds and encoding as I suspect some readers have found to their
cost.

Hardware modifications

Connections for the two extra keys are shown in Fig 3. The interface for the original design, but this must be connected to D_{0} instead of D_{7}. Most teleprinters contain an interface card for a 20 mA loop or an RS-232 link. For a the printer quite satisfactorily.

Firmware modifications
Changes to the firmware are detailed in tables 8 and 9 . Primarily, space has been made in the first e.p.r.o.m. for three of which deal with instruction entry and condition testing of the MM57109. This has been achieved by using a simpler and shorter teleprinter interface, eliminating the subroutine at 034 E , and
trimming the low level monitor so that it ends at 024 E . This has left space in the second e.p.r.o.m. for a new subroutine 051D which extends the old 04E6, now 47C, and together they can recognis these routines are quite complex, disassembled listing of each is given in table 10 .
The third r.o.m. is slightly briefer because checks for ends of lines, prese routines, are replaced by 051 D . The command MOD (08 BE) has been changed so that PRINTs buried in multi-statement lines are also changed o WRITEs. CALLS have been readCALL 042E has been replaced by the single RST byte CF (see 0008). In the
original r.o.m., after going through the
original r.o.m., after going through the
sequence of recognition checks for encoded commands or, later, first words of statements, the interpreter returns to the command state or ignores the rest of match or the generated code within the firmware.
This is particularly useful for dealing with REM because, being unrecognised, such lines are ignored as explained last r.o.m. provides jumps to 1 C 00 (at 0975) for commands, to 1 C 60 (at 0AD7) for new statements and to ID00 (at OBDE) for new functions. As a result REM has disappeared but the apostrophe has the
same effect and retains the facility for remarks. 0993 is an example of where 051D is used solely to jump spaces between the
ine number and the first word of the statement. Therefore, it is the point to which 05ID transfers execution after coming across an ! in the text being interpreted. 097F pops off the stack ister which is used as the line registe store and then looks for and execute that new line. Thus, it is the point to which 051D transfers control afte finding a ' or 8DH number in the tex line numbers whether they exist or not the lines in a program should be as clos together as possible (say every othe line) for the fastest program execution Using multiple statements avoids this fore reduce the execution time of some programs, particularly simple ones, by
to 20%.

Table 7. Additional facilities for the new monitor
NT (OB64) Outputs the number in the 57109 to 1 EOO - F and tests the exponent sign. It negative, the whole number is written to zero, if positive, the lower mantissa exponent is drawn and used to calculate (OB72-8) where blanking should start. If stack in the 57109 is then collapsed by one to remove the old value (OB97) and the new value is entered into the 57109 by a jump to 050 F at OB9A. Outputs the number and tests as in INT. If the exponent sign is negative,
execution jumps to $O B 96$ (OBA5) and effectively does nothing. For positive exponents a similar sum involving the lower mantissa exponent digit is performed

ND (OBB4) and a jump is made back to OB79 in the INT routine (OBAE).
O2F is called which loads the refresh register into A. converts it to a three digit O29F is called which loads the refresh register into A, converts it to a three digit
decimal integer and enters it into the 57109 (this subroutine runs straight into decimal integer and enters it into the 5 (109 (this subroutine runs straight into
O2AD). A pseudo-random delay (OBB8-A) based on the current v.d.u. printing position is then called so that a second call of 029 F will generate a second
number from the $Z 80$ refresh register which is only tenuously linked to the first. These numbers, now in the Y refister which is only tenuously linked to the first. These numbers, now in the Y and X registers of the 57109 , are combined
through the sequence of instructions at $O B E E$ to give $X=128 X+Y / 16383$, ie. a reasonably random number between 0 and 1 . Note that as this uses two of the
57109 stack registers, no more than two other variables must be present in the 57709 when RND is used.
This simply uses the number cruncher test instruction 12 to test for a negative number in the X register. The result of this test governs whether the instruction to
change sign, OC, is executed.

Table 8. Alterations to the first room

024 F was 03CE	0263 was 0260	0282 was 058A
02AD was 024E	02 C 7 was 0446	0326 was 0317
0345 was 0336	0367 was 0729	0374 was 0372
0395 was 0393	03 A 1 was 039F	03AB was 03A9
03 C 6 was 03C4	03 D 1 was 0260	

292 Generates a 7 -bit pseudo-random number and inputs it to the 57109 .
201 Converts the compler 6 bit ASCll to true ASCII and prints it
209 Prints a space.
O2DE Prints carriage return and line feed.
2 2FO Prints (A) as a a two character hexadecimal byte

Using the new facilities in low level the first feature to be noted is that READY does not disappear whe a command is typed in nor does the firs etter appear at the beginning of the same algorithm is now used for both high and low level word recognition Clashes produced in the changeove explain the changes of COR to MOD the space key is now used instead of The main change which affects both levels is that the interrupt-and-reset which occurred whenever any key wa depressed, has been omitted becaus control can be regained by using standard keys, RESET enters the low level and Control A (depressing A and the control key simultaneously) enters the high level. The delete key to the bytes by one depression per byte. Although this will cause the formattin to go out of true during the LOAD, th grouping by four is maintained and on pressing the space bar at the end of th When loading programs in hig
language, another character Control is used to signify the end of LOADing or was previously used for this purpose to be included in printed messages etc. without terminating the current opera tion. Ensuring correct format of the nput has been eased by a curso
ablems will be encountered if a space typed when in doubt. The DEL key racter and also backsteps HL. Correc tions are, therefore, easily typed in, bu istaken returns and line numbers canFig. 3. Modifications to the keyboard and teleprinter interface.

Teleprinter interlace

Table 9. Firmware changes

Old 04D4 running straight into 040 D
Old 0460

0
OId O4E6, O4FA-E is added to this so that when a code of less than OB is drawn from the look-up table at the end of the r.o.m., execution jumps to $0 B 60$. These new codes are for ABS, FRAC, INT, RND and any others which are not simple MM 57109 operations and will thus require some $Z 80$ software. Jumps spaces and then returns on bytes less than 1 B and greater or equal to 2 A (except for 8 D). Thus, for letters, operators and spaces, this routine will just jump spaces and return with HL pointing to the first non space, i.e. 051 D is a supplement
to 047 C . If the byye found lies between 1 A and 2 A it will, after; (a) " 1052 D) transfer text up to the next" onto the v.d.u. and then jump back to the start of the subroutine to deal with whatever foilows.
(c) (0542) call 051 D to iump spaces and then 047 C to execute the text within the parentheses until the call of 051 D finds a) As this) will have been found during the calling of 0511 at 0546 and as) indicates that the original call of 051 D is no longer required, i.e. the bracketed term has been computed, detection of) drops the stack pointer past the return address the
call at 0546 so that a return is made to the original point in the interpreter from where 051 D was called. After dealing witt an expression in parentheses, the computed result is left in the X register of the 57109 and the SCII for), 29, is left in register A.

If the interpreter has not yet recognised the byte it must now be at the end of the statement. Before looking for a!' or 8DH two types of statement need special attention. 1 FE1 is used in the third r.o.m. (0999) to store the code generated from the
first word of the line. If it is 33 (i.e. a WRITE statement) execution shifts from 0554 to 056 . WRITE lines are similar to prin types except that the material to be displayed is fed to locations from 1080 rather than to the $v . d . d .0 .056 \mathrm{~B}$ sets an FF at th and DE it returns to 0563
If the line is a LET (code 2C) the variable to which the computed value is to be assigned is drawn from its store (1FE2) and the contents of the $57109 \times$ register are fed to it.
After dealing with these two special cases, checking of the original byte continues (0560). The remaining possibilities will
transfer control rather than return from the subroutine and so the pointer is moved down the stack, losing the previously stored return address and then, after;
(d)! (0563) execution passes to 0993
(e) 8 DH ' or anything else passes execution to 097F. 8 D is the code for return and indicates the end of a line. ' signifies that the rest of the line is a remark which the interpreter will also want to treat as the end of a line.
Uumps text and then calls 051 D and, when required (i.e. letters, operators or digits), 047 C as well
Old 0714.
Unchanged.
Unchanged.
Unchanged.
Modified 074 A
Old 076 D .
Used in the above two
Unchanged
Unchanged
Unchanged
-

WIRELESS WORLD FESBUAGY 1980
they involve internal operations by the interpreter rather than the byte by byte The critical formatting points are line lines where the variable following let must be followed immediately by th equal sign, and IF lines where, when a ariable precedes the comparison sign here must be a space in betwee
A program in table II demonstrates
the uses of the new facilities. Lines 3 and show the new REM and in this cas hey are complete lines on their own emarks may be appended to any active line just preceded by an apost NPUT line. The input variable X is gainst the " to save r/w.m. space but again, spacing is not critical. In line 7 wo spaces are left between step and without any effect on the interpreting of parenthesis is spaced exactly as in a LET statement. Line 9 demonstrates the compounding of two LET type state ments (with the LET omitted) by the use an exclamation mark. The statemen the!, again to conserve r/w.m. space. Line 11 is "If K is a whole number and if Z is also a whole number, then print half K plus A to two decimal figures and heen half of the positive difference bet need for a space between the variable and the greater than, equals or less than ign. A space is required because, under he original interpreter, this had to be a number or function in parenthesis and herefore has to be distinguishable. A closing parenthesis has no other meaning and does not need the space, . TF ($X, N 1-$) $=$ Q print...
be any other permitt comparison including another IF as shown in the example program. Therefore, the old form IF $X=0$ THEN 125 will be IF $X=0$ GO 125. It might seem that the freedom same line will reduce all programs to one line in length (note that a line is not determined by the length of a v.d.u. line and may consist of any number of characters). However, this is not so because as the result of a jump, or it initiates a specific jump, the statement must either start or end a program line respectively. This means that the first instruction in a FIne because further through thing of a tion a NEXT will try to jump back to it. Similarly, the statement after the complete IF term must be on a new line because IF is basically "perform the test if the latter is true or jump to the next line".
By similar reasoning, GOSUB and GO should be at the end of lines, as should GOSUB and GO refer should to which the statement to which the jump was directed

While encoding the new functions by gorithm, several clashes occurred povided an opportunity to re-encod provided an opportunity to re-encode tandard format, i.e. CLG for a com mon \log and LOG for log. to the base The radian to degree conversions have

${ }_{20}^{2} 26$
letter, i.e. TD for a conversion to de grees and TR for one to radians.
The author is offering a set of three p.r.o.m for $£ 30$. Alternatively, existing prirmwar be reprogrammed for 66.50 (both plus 35

Table 11. Demonstration program
003 'THIS PRJGRAM, PUBLISHED IV PART 4, TOOR 19 LINES BEFORE. YOK...

$015 \quad 0=1$
$025 \mathrm{~F}=\mathrm{X}$
027 RET,
2078

 .

左 A

New frequency allocations

WARC 79 decisions for radio services in Region 1

The list opposite gives frequency allocations to radio services decided at the ference (WARC 79) held by the Internference (WARC 79) held by the InternGeneva 44 September 6 Union at is taken from the revised Radio Regulations which will come into force on January 1982 and will replace the allocations made at the previous event of this kind held in Geneva in 1959 (see ground). Because of lack of space, and the interests and geographical distribution of our readers, the information presented here is no more than an exfract from the illocations which will be part of the Regulations and in its present form runs to 174 pages and includes hundreds of footnotes, giving additions, qualifications, restricions etc for partionly ITU Region 1 (Europe Africa, Middle East and Russia). Secondly, its upper limit is 10 GHz whereas the WARC allocations in fact go up as far as 275 GHz . Thirdly, all the footnotes have been omitted. Nevertheless, the list does are particularly important to radio services in the UK.
For example: as a result of a change in the long-wave band limits, Droitwich (Radio 4) frequency will eventually have obtained a medium-wave frequency for their Carfax traffic information service; international shortwave broadcasting has acquired overall
an additional 780 kHz , including an exan additional 780 kHz , including an ex-
tra band; television Channel 1 (Crystal Palace and other stations) will be transferred from broadcasting to radio communication; land mobile radio may and Band III by internal agreement within the UK (the 405 -line television services in these bands probably will be closing down by 1985); v.h.f. radio broadcasting wir eventually be extime it will be sharing the top end of this band $(104-108 \mathrm{MHz})$ with communication services; at u.h.f. two 8 MHz channels will eventually become available, perhaps for land mobile radio or televiV ; and at the top end of the u.h.f. band there is more space for mobile services. However, it will take a good many years
for all these changes to be implemente and some will not occur till near the time of
2000 AD
In the lists, the code letters show the radio services to which the frequencies
have been allocated, and these codes are explaind in the key below. The terminology here is approximately the same as that used in the ITU frequency allocation document. In all cases the of the frequency band, indicates a "primary" service (using ITU terminology) in the band, that is, a service which has equal rights with a "permitted" service but has prior choice of
frequencies when frequency plans are made. The next code letter to the right could also indicate a primary service, but in some cases it could be a "permitted" service (which has rights equal to those of a primary service except that it
gets the second choice in frequencies) or a "secondary" service (which must not cause interference to primary services and cannot claim protection from interference produced by them). To our list does not indicate the actual categories of service applying to the second and subsequent code letters, but in general a rough guide is that the order of categories when moving through the code leters from left The following notes highlight some of the changes which may be of interest to our readers.

Long waves

The limits of the l.w. broadcasting band $150-285 \mathrm{kHz}$) have been moved down ards in frequency by 1.5 kHz to bring the band in line with medium waves in having its carrier frequencie at integral multiples of the 9 kHz chan nel spacing, to avoid heterodyne inter ference and facilitate digital tuning of channels will be moved in three blocks of 5 channels, starting in 1986 with the lower limit and ending in 1990 with the upper limit. As a result the 200 kHz Droitwich broadcasting frequency will Radio beacon frequencies for aircraft navigation within this range will be changed accordingly.

Medium waves

The band limits of the m.w. broadcast ing band ($525-1605 \mathrm{kHz}$) have been ad give the correct amounts of space for the sidebands at these limits - an adustment that was not made at the 974-75 regional l.f./m.f. broadcastin conference (January 1976 issue, p.42).
Just below this the BBC have acquired a 7 kHz band of 519.5 to 526.5 kHz on secondary basis for their experimenta Carfax traffic information service

Short waves
The short-wave broadcasters did no get the hoped-for increase of sixty per achieve an extra 780 kHz overall, which amounts to 32.5% over the present allocation. They acquired a new band a $13.6-13.8 \mathrm{MHz}(21 \mathrm{~m})$, extended the 13 m , mounts varying between 100 kHz and
continued overlea

	o o 	
 $\stackrel{3}{3}$	 	

enough spectrum was allocated in the 41 m and 49 m broadcasting bands. The maritime mobile service has also gained some ext a 100 kHz or more.

V.h.f. bands

The radio communication services gained some extra frequencies at v.h.f. in parts of the spectrum they have not been in before. For example, $41.015-$
47.0 MHz will be exclusively for fixed and mobile communications. Hitherto in Britain $41-47 \mathrm{MHz}$ has been allocated to 405 -line television broadcasting
(Channel 1 of Band I) and in fact the BBC will be able to keep it on a primary BBC will be able to keep it on a primary
basis till 1987 (and the French broadcasters till 1986). Furthermore, the land mobile service of 30 countries including the UK have been allocated $47.0-68 \mathrm{MHz}$ permitted basis, leaving broadcasting as the primary occupant. When, however 405 -line television broadcasting is closed down, and in the absence of alternative broadcasting requile radio could be allowed to take over the whole band.
The land mobile service of the UK and 15 other countries has also obtained the and $174-223 \mathrm{MHz}$ on a permitted basis Hitherto $174-216 \mathrm{MHz}$ has been broadcasting (Band III) for 405 -line transmissions in the UK) and this service will continue to use it, and the extension to 223 MHz , on a primary And land mobile radio in 19 countries including the UK will also be moving into an adjacent band $223-230 \mathrm{MHz}$ on a permitted basis. The primary occupan of this band will be broadcasting, while use it on a secondary basis.
The land mobile and maritime mobile ervices have primary allocations in 29 countries, including the UK, through However, mobile radio will be losing some spectrum in the region of 100 MHz as v.h.f./f.m. sound broadcasting is extended upwards in frequency (January issue, p. 63). Broadcasting in fact will in a band $87.5-108 \mathrm{MHz}$ and has a com mon world-wide allocation from 100 to 108 MHz (a decision forced mainly by the African countries) and the UK police and fire mobile radio at present
using $97.6-102.1 \mathrm{MHz}$ will have to move by the end of 1989. Up to then they wil remain on a permitted basis and there will probably be a phased withdrawa over the next ten years. Meanwhil to use $100-104 \mathrm{MHz}$ on a primary basi until a new plan made by a regiona broadcasting conference (possibly in 1983) comes into force. And 104 108MHz is allocated to mobile radio on on a secondary basis thereafter. In the UK this $104-108 \mathrm{MHz}$ is at present used

Multiphonic synthesizer organ

Improved circuit to eliminate 'thumps

by J. H. Asbery, B.Sc.

The novel keyboard switching system described in an article in this journal in played simultaneously with th to be only six generators. One drawback to the original system was the
 tion of 'clicks' and 'thu when keys were pressed and released: this new version use same switching arrangement, but an additional circuit to provide a smooth

 decay is included.A multiphonic organ is one in which here are only as many generators as as distinct from one generator for every note on the keyboard, which is the cas with a polyphonic organ. Two com letely The are in use.
enerator system, producino haphoni for each note of the keyboard, but only ne basic waveshape. An electroni multiphonic switching system connects
this signal to one of a limited number of waveshape processing units when a is pressed. There are typically 12 of hese units, so that only 12 notes may sound at the same time. A computer organ with only 6 wave shape proces-
sing units would be an attractive proposition, if a significant reduction in cost could be achieved.
The second type ${ }^{1}$ uses a mechanical keyboard changeover switching system is determined by the value of the resistor connected to it by the keyboard switching system. Whilst these organs are satisfactory for home use, they are when the and is lifted from the board the connection to the resistor is broken, so that the signal ceases abruptly. At higher volume levels, such as hose required for church or theatre use,

Fig. 1. Circuit of the multiphonic synthesizer organ
his gives rise to objectional key click and thumps. The use of a reverberatio nit mitigates this effect a little, but despite much work to find alternativ heans of reducing the clicks and humps to an acceptable level, it app acceptable solution is to arrange for the sound to die away over a few cycle when the key is released.
Most synthesizers are monophonic which is a severe limitation. There are phonic generator system is used, the output waveform from the keyboar witching system being fed to a pro rammed, voltage-controlled filter, bu ystem consists of a mixture of the different notes, so that it is not possib to process the signals individually by the usual synthesizer techniques.
By combining multiphonic techn ques with synthesizer techniques, it is the synthesizer, namely its monophoni

characteristic, by multiphonic techniques, and to overcome the limitation o
inexpensive multiphonic organs by nexpensive multiphonic organs by are voltage-controlled oscillators: it is herefore possible to store the switched voltage on a capacitor so that they will continue to oscillate at the correct
requency after the key has been released, and arrangements can be made to cause the sound to die away over a few cycles, completely elimin ating click and thump. The waveform from each generator is available
separately and unmixed for individual treatment and processing by existing synthesizer techniques.
Voltage-controlled oscillators The requirements placed on voltage ontrolled oscillators for use in multiphonic organ are more stringent strument. As there are more than one of these units, the cost and size become more significant and it is more import ant to minimize these. In a multiphonic is the same for all the v.c.os, so that high consistency between all the oscillators in the one instrument is es sential.
The design of the ramp-type v.c.o
adopted, IC_{4} and IC_{5}, is conventional dopted, IC_{4} and IC_{5} is conventiona which is used in a new way. When this design of v.c.o. is used with a switching transistor in conventional mode the
transistor gives rise to a large variation between similar v.c.os: f.et.s. are sometimes used, but these are also subject to a wide tolerance spread. In conventional mode, the bottoming voltage on) is of the order of 40 mV . Transistors are sometimes used in the reverse mode, in which the functions of collector and emitter are interchanged and the botoming voltage is reduced to around 25 mV . In the mode of operation used flows from base to emitter and from base to collector in the same direction, rather like two separate diodes (except with much better characteristics). The
bottoming voltage, that is the voltage bottoming voltage, that is the voltage
between collector and emitter, is of the order of 2 mV . As a result of this there is much better consistency between a

Decay switching

The second main problem of a multiphonic synthesizer is that it is not practical to provide two-pole, or two separate keyboard switching systems: the one system has therefore to perform.
two functions. It has to connect the two functions. It has to connect the
v.c.o. to the voltage corresponding to the key pressed, and it provides an on/ off control signal, for that generator, to control the modulation envelope
sequence and any other signal processequence and any other signal proces-
sing sequence desired. The keyboard switching system connects the v.c.o. memory circuit, $\mathrm{C}_{1}, \mathrm{IC}_{2}$, to the correct

voltage, enabling the oscillator to continue oscillating at the correct released. As the capacitor, C_{1}, holds the control voltage, there is no change o voltage and no signal available to in iate the decay sequence. If the capacior, C_{1}, is omitted or much reduced
when the key is released the output voltage of IC_{2} falls, providing a signal to nitiate the decay sequence, but the requency of the oscillator will be in is problem is solved by a two pol switching system.
The solution adopted here is to interose a resistor, R_{29}, between the switching system and the memory
capacitor, $\mathrm{C}_{1} . \mathrm{IC}_{3}$ detects the direction of current flow through this resistor by etecting the polarity of the voltag across it. When the note is pressed the nput current to the non-inverting input of IC_{3} flows through R_{2}, so that the egative than the inverting input: the output is therefore low. When the key is eleased, the input current to the inver ting input of IC_{3} and the non-inverting capacitor, C_{1}, and flows through R_{2} and the inverting input of IC_{3} becomes more negative than the non-inverting input, so that the output goes high. The output of IC_{3} is the required contro signal. When the key is released the
output voltage of the memory, IC_{2}, falls by the sum of the voltages across R_{29} i the one and off states. In the organ de
scribed in this article the resulting change of frequency could not be detected by ear. However, if this slight frequency shift is not acceptable, correction can be made by mixing a small
amount of the output of IC_{3} with the output of IC
The keyboard switching sys tem is divided into two halves to
minimize the work and cost and to reduce the range required from the v.c.os to two octaves. The left-hand scillators are similar to the right-han nes to ensure the required accuracy tors. Two-stage, divide-by- 2 units, to reduce the frequency by four are interposed between the output of the left-
hand oscillators and the modulators or signal processing.
The keyboard resistors form a series system so that a low impedance can be provided without undue current con-
sumption, and so that the value of each sumption, and so that the value of each from one note to the next. The part of Fig. 1 to the left of the
dotted line is the generator and on/off dotted line is the generator and on/of detector, which may be used to drive
synthesizer circuits as desired. The circuit to the right of the dotted line is simple organ envelope generator and modulator.

References

1. Multiphonic organ, J. H. Asbery. Wireless
World Jüne 1973, p 303 . World, June 1973 , p303
2. Transistor organs fo Douglas

What's so natural about \boldsymbol{e} ?

2 - The relationship of Euler's number to logarithms

by John C. Finlay

In the previous article the author presented the first part of a popular
study of Euler's num study of Euler's number, the key to continues with his use of graphical methods to show the relationship of e to natural logarithms, after discussing the invention of logarithms by John Napier.

The more inquisitive type of schoolboy who has just managed to conquer the base of 10 (thanks to Henry Briggs from Yorkshire, 1561-1630), leafs through his new book of tables and comes acro another table of logarithms, variously described as natural, hyperbolic or seeing the odd-looking figures and th cumbersome calculations required fo numbers lying outside the range of 1 to 10 he promptly shuts the book and is pushing itself forward word natura doubt you are thinking "I won't b caught the second time. It's obviously oing to be natural and has something The really 'e'." And so, of course, it is ral logarithms is the fact about natuclose to them was originally published by the landed Scottish aristocrat, John apier (or Neper), 1550-1617, as the irst-known logarithms, and long before Now the historical several series fo tudy of a science is often rewarding a he very least in clothing it with some ften welcome human interest, and a est presenting a logical sequence o levelopmenty time scale, which may on ${ }^{\text {a }}$ some consolation to the student of oday who is expected to take it all in within five minutes! I can offer no such eat justification for looking at the ably tortuous, certainly curious, mathematically revealing and utterly ascinating. Above all, the invention of garithms was, uniquely in mathe atics, an unheralded bolt from the nary celebration in 191410, ${ }^{11}$), owing nothing to any previous work.
Baron Napier, of Merchiston Castle, Baron Napier, of Merchiston Castle,
Edinburgh, had a major preoccupation Edinburgh, had a major preoccupation, imes of the Spanish Armada, in lam
basting Roman Catholicism and pro ing scientifically that the Pope wa Antichrist. Fortunately, however, he ook time off to try and help astro nomers and navigators in their compli importance in the expanding world that followed the explorations of the firs Elizabethan age. In particular he wanted to reduce the labours of multiplication and division in frequently used
-
$\sin \mathrm{A} \sin \mathrm{B}=\frac{\cos (\mathrm{A}-\mathrm{B})-\cos (\mathrm{A}+\mathrm{B})}{2}$
which you and I learned at school, and which was also well known in Napier's time.
Now suppose that, like Napier, you had no knowledge of the laws of indice numbers in that form, just what migh ou deduce from a comparison between ese two sets of numbers
12345 6(Arithmetic progression) 248163264 (Geometric progression) (which we looked at earlier)? Obviously the first set is an A.P. because all the unity, whereas the second is a G.P. since successive terms increase by the same that the G.P is made You will then note equal to the corresponding Aples of 2 e.g. $16=2 \times 2 \times 2 \times 2$ (four 2 s). Perhaps you have also spotted that any two terms in the G.P. multiplied together eg. $2 \times 4=8$ and $4 \times 16=64$ in the list, far was well known before Napier's time. But now have another look at the A.P. terms corresponding to the last twb examples:
$\begin{array}{ll}\text { A.P. } 1+2=3 & \text { A.P. } 2+4=6 \\ \text { G.P. } 2 \times 4=8 & \text { G.P. } 4 \times 16=64\end{array}$ Isn't it self-evident where Napier received the inspiration that was to earn doing their calculations in science, engineering and business?
To convert the multiplication of awkward numbers into the simpler clearly requires many fine steps to be practical, and they must range in geometrical progression against their artificial numbers' (as Napier first

Commonsense dictates that, withou ny precision aids to calculation, the possible, but what about the startin artificial number? Here the plo thickens, because this number was not , as you might expect, but 10
Co see where this arose, we mus draw up a table of artificial numbers for dealing with the multiplication of sines and the sine in his day was not the ratio as we understand it but simply the angle in a right-angled triangle (it must surely astonish you to realize the sexappeal of this half-chord, due to a translation error made over 800 years ago ${ }^{12}$. Sinus in Latin means 'bosom' or
'curve', i.e. the cleavage!. Moreover the convenient idea of the decimal point for decimal fractions had not been used - it was in fact introduced by Napier when he was preparing his tables!
Tables of sines (as then defined) for
various angles were various angles were commonly avail-
able, and to have the convenience of stating them in whole numbers a high round number such as 10^{7} was arbitrarily given to the hypotenuse of the corresponding right-angled triangle, thus allowing a 7 -figure statement of the s sine'. The sinus totus or 'whole sine'
for 90° was than 10000000 , for 21° was 3583679 (see Fig. 13) and for 0° was just 0. Napier used such figures in drawing up his tables, based upon a G.P. starting with 10000000 and taking off 1
10000000 as an easily calculated frac tion from this first term and every subsequent term. He kept going until he reached the hundredth term, which worked out at about 100 less than the (note his use of the decimal point 110)
He realised then that the gaps be we reaised then that the gaps bet-
ween the terms would eventually be-
come very small, requiring millions of come very small, requiring millions of calculations between any two conse
cutive integers! Another approach was cutive integers! Another approach was spiration, a geometrical model whic culations but also a firm scale to which to peg them. Talking of pegs, let us note
that by this time he had also invented hat by this time he had also invented rtificial number') from to replace nnown Latin words logus = ratio and

Fig. 11. Napier's dynamic model for the definition of his logarithms.
thus a 'ratio-number'. What a pity it was that the laws of indices were unknown to Napier! Not only would this have have spared us yet another redundan mathematical word (logarithm $=$ index $=$ exponent $=$ power! ${ }^{13}$).
The model was a dynamic one, visualizing the comparative motion of
two points along two parallel lines (Fig. ${ }_{11}$) to the same scale of distance. One point P_{L}, representing the logarithm, moves at steady velocity v_{L} along the The other point P_{N} representing the number, moves along the upper line of 10^{7} units long, and at a velocity v_{N} equal to its distance y from the far end of the line. At the starts, for the 1st term, both P_{N} and P_{L} move away at the same but P_{N} steadily slows down as y diminishes and gradually falls behind P_{L}. Napier defined his logarithm as (Napierian) logarithm $=x$ for the cor-
responding number y
as obtained from the model. So a zero logarithm implies a number of 10^{7} and corresponds to a decrease in the number. P_{L} also has to reach infinity before P_{N} arrives at the scale end at number zero.
Now consider the comparative posiscales. The 2nd term, by definition, was $10^{7}-1$, and so the distance along the number scale from 1st to 2 nd terms is 1 unit (on either scale) as marked. The
corresponding logarithm for the 2nd term was estimated by Napier as 1.0000001 , which for practical purposes on the diagram can be shown as approximately 1 . This establishes the linear log. scale and the term markings was also able to fill in on the number scale (in principle, anyway) the values he had already calculated for the first 100 terms. You will see straightaway that the terms will steadily crowd up.
on the number scale as P_{N} moves to the right (the degree of compression is exaggerated for effect in Fig. 11 for the few terms shown), and that you would need an infinite number of them to reach the zero number, as sugge
the lower scale rising to infinity Now suppose, as I suggested before, that you, like Napier, had no knowledge of the laws of indices, nor of the calculus
(the work of Newton and Leibniz was still to come). What else could you
discover from his model which would help you to calculate just those logarithms that you wanted for particular numbers, instead of a thicket of largely useless G.P. terms? Well then, you might suddenly realize that by
spanning equal lengths along the log. spanning equal lengths along the log
scale you could use the other favourite trick of the engineer and extrapolate your number values from those already ound, skipping over a lot of unwanted ones. More generally, as Napier used ${ }^{10}$ $\log b-\log a=\log d-\log c$. He was thus able to extrapolate from one number whose logarithm he had already calcuated to another whose logarithm was to be found, at least very closely, by matching
His objective, remember, was to pro duce a table of logarithmic sines, reorded for every minute of angle from 0° to 90° alongside the sine value others ${ }^{10}$. He matched the sine values as nearly as possible to the number appearing in his series and used ratio methods to account for the small dif were laid out in complementary form reading down the left-hand sides from 0° to 45° and up the right-hand side from 45° to 90°, so that cosines and \log cosines were also obtained by readin ference' column table. A central 'dif ference between the two adjacent columns of logarithms, also enabled log angents to be obtained
So, after some twenty years of comvaliantly accomplished his purpose in easing the multiplication of sines (an other trigonometric functions). Durin this work he came to realize the broader application or his alal although such logarithms from his original tables was no easy matter if they had to be interpolated between the available fig ures (allocated of course to particula Latin ${ }^{14}$ was an instant success, not only in Britain but throughout Europe as well (it included 90 pages of the table and 57 pages of description of their
uses).
Professor Henry Briggs (of London

WIRELESS WORLD, FEBRUARY 1980 and later Oxford Universities), the leading mathematician of the day, was so impressed that in 1615 he visited Napier at Merchiston to pay his respects and to discuss the system. This was a
most famous and fruitful meeting, most famous and fruitful meeting,
resulting in an agreed change of 0 to be the logarithm of 1 (which Napier had already been considering) and an appropriate power of 10 to be the logarithm of 10 , as being more con-
venient for generait calculations using logarithms. This was the basis of ordinary or Briggsian logarithms. Napier died in 1617 and in the event Briggs
chose the now familiar base of 10 for the chose the now familiar base of 10 for the new 14 -place tables for numbers from 1
to 20000 and 90000 to 100000 which he published in 1624 ${ }^{16}$. Vlacq, a Dutch mathematician, filled in the gap and republished the Briggs figures in 1628^{10}. Now can we leave the history of logarithms here, enthralling though it
may be to some ${ }^{7,18,19,20,21}$ and boring to others? If the latter think I seem to have been carried away by it, I have had a very definite goal - to answer the burning question of the difference between
Napierian and natural logarithms, a matter fundamental to the understanding of ' e '. I am staggered to find that even many mathematicians do not recognize a difference (quotations would be invidious!), so it is no wonder is a classic example of the merit of going back tooriginalsources for information. Also, above all, there is the fascinating question as to why Napier's logarithms, as the first-born, are related to e, of Let's make nothing.
numbers (y) which Napier found in his series, plotted against the logarithms (x) which he allocated to them (Fig. 12).

Fig. 12. Napier's series for calculating logarithms fits this curve.

He assigned 10^{7} to a log. value of 0 and two or three points taken from his tables ${ }^{14}$ for logs. up to around 1.5×10^{2} will do. Here are some typical values

Angle	Sine	Log
	(old form)	(Napieri
0°	0	
$12^{\circ} 53^{\prime}$	2229666	15007
${ }^{21} 1^{\circ} 35^{\prime}$	3678541	10000
$37^{\circ} 20^{\prime}$	6064511	5001
90°	10000000	

The curve looks suspiciously like an exponential of a^{-x} form (Fig. 7), es
pecially as it dies away with a feathe

RELESS WORLD FEBRUARY 1980
finish to infinity on the log. scale. Percan cheat a bit by looking forward to the useful curves of Fig. 17 (next part) Now examine the value of y for $x=10^{7}$. Napier quotes 3678541 for 10000685 espectively (which is as near as we can -get without resorting to Napier's tor figure by the first on your ever-eager electronic calculator and what do you find? Yes - e again! ($1 / \mathrm{e}$ is of course form (compare with Fig is then of e^{-x} form (compare with Fig. 17) because reaches the value of y at which the curve crossed the y axis (here 10^{7}), the value of y has fallen to $1 / \mathrm{e}$ of its careful comparison of With a bit of you will see, I hope, that $y=e^{-x}$ in 17 has to become $y=10^{7} \mathrm{e}^{-x / 10^{7}}$ for Fig. 12

$$
\begin{aligned}
& \mathrm{e}^{\mathrm{x} 10^{7}}=\frac{10^{7}}{y} \\
& x / 10^{7}=\log _{\mathrm{e}} 10^{7} / \mathrm{y}
\end{aligned}
$$

Thus Nap. $\log y=x=10^{7} \log _{e} 10^{7} / y=$
$10^{7} \log _{1 / e} y / 10^{7}$
(In case any of you with a knowledge of calculus, like our old P.M. friend, have calcu us, like our old P.M. friend, have the last bit of trickery, you might like to read a very simple and elegant proof of the above results ${ }^{17}$. Whichever way you than Napier could - he didn't stand negative indices!)
Now why should the numbers for Napier's logarithms have anything to do with e? Well, of course, they were formed in a geometric series of reducing value, similar but opposite to the the strip-by-strip build-up of $y=\mathrm{e}^{-x}$ (Fig. 8), so that we get the mirror-image curve e^{-x} (see Figs. 7 and 17). And what The result 10^{7} log Napier's logarithms? Napierian base is $1 / \mathrm{e}$, as is also clear from the fitting of the y / x curve to e^{-x} In contrast, for the e^{x} curve the logarithmic base is e. By common logarithmic base, which it is then for the natural growth curve. On the othe hand, Napier's base is a 'natural' (if you will forgive the confusion of meaning! or the natural decay curve! eference to history, ${ }^{11}$ what we now natural' logarithms first appeare ccidentally as interpolating numbers in Edward Wright's 1618 translation (into English) of Napier's Descriptio. Logarithms', as he called them, were published for numbers 1 to 1000 in 1620 by John Speidell in London, being
natural logarithms without the decimal point. More than a century was to pass logarithms was appreciated in analysis, including the work of Euler on negative and complex numbers (mentioned later). Johann Heinrich Lambert, an
Alsatian, published the first such table in 1770 . To se derived from natural logarithms a such, let's first consider the slopes o in general. Earlier we looked curve ponential curves of the form $y=a^{x}$, but his time we'll interchange x and y to ocus attention on the exponent as the dependent variable:
If $x=a^{y}$ then $y=\log _{\alpha} x$ (from the defini
tion of a logarithm).
Here are some calculated values of y for various values of x and a :
proportional to x, or $\mathrm{d} y / \mathrm{d} x \approx 1 / 0.7 x$, an fact this will check out against any make. measurements you may care to

Also for $a=\begin{gathered}4 x=5 \text { slope }=\mathrm{d} y / \mathrm{d} x= \\ 0.5 / 3.5=1 / 7\end{gathered}$ and at $x=10$
gain the slope is inversely. .0 .5 . Again the slope is inversely proportio
nal to x, and in this case $\mathrm{d} y / \mathrm{d} x \approx 1 / 1.4 x$ In the same way you can find out for $=3$ that $\mathrm{d} y / \mathrm{d} x \approx 1 / 1.1 x$.
It now strikes you that there must be and 3 for which $\mathrm{d} y / \mathrm{d} x=1 / x$. So let's interpolate again to find it by plottin $1 /(x(\mathrm{~d} y / \mathrm{d} x))$ against' a as in Fig. 14. If you are beginning to feel that you've been here before, just look back at Fig done is to exchange x and y ! Thos pproximate coefficients $0.7,1.1$ and 1. ing a bell or two, and if you turn Fig. 13

x	$1 / 8$	$1 / 4$	$1 / 3$	$1 / 2$	1	2	3	4	8	9	16
$\log _{a} x$ for $a=1$				$-\infty$ to $+\infty$							
$\log _{a} x$ for $a=2$	-3	-2		-1	0	1		2	3		4
$\log _{a} x$ for $a=3$		-1		0		1			2	2.52	
$\log _{a} x$ for $a=4$	-1		0			1		2			

[^1]sideways and look at it in a mirror it
becomes identical with Fig. 5. The point is hammered home in Fig. 15 where the curves for e^{x} and $\log _{\mathrm{e}} x$ are shown against the same axes.
So, as well as finding bring out the value of e, we have proved (no, after some ominous rumblings from-
the P.M. I had better substitute the P.M. I had better substitute
'verified') that for $\mathrm{e}^{x}, y=\mathrm{d} y / \mathrm{d} x$, and that for $\log _{\mathrm{e}} x, 1 / x=\mathrm{d} y / \mathrm{dx}$. Those of you for $\log _{e} x, 1 / x=d y / d x$. Those of you
who aspire to the calculus will note that
we have also obtained the differential who aspire to the calculus the differential
we have also obtained to
coefficients with respect to x of $\mathrm{e}^{x}\left(=\mathrm{e}^{x}\right)$ coefficients with respect to x of $\mathrm{e}^{x}\left(=\mathrm{e}^{x}\right)$
and of $\log _{e} x(=1 / x)$.
There is still one more graphical wile that we can use to find e, which you may think is even trickier than any I have so far mentioned. Consider the
innocent-looking equation $y=1 / x$ and innocent-looking equation $y=1 / x$
draw up a table of values for it:
\[

$$
\begin{array}{rrrrrr}
x & 1 & 1.5 & 2 & 2.5 & 3 \\
1 / x & 1 & 0.67 & 0.5 & 0.4 & 0.33
\end{array}
$$
\]

$$
\begin{array}{llllll}
1 / x & 1 & 0.67 & 0.5 & 0.4 & 0.33
\end{array}
$$

$$
\begin{aligned}
& 1 / x \quad 1 \quad 0.670 .50 .40 .33 \\
& \text { Now plot these out as in Fig. } \\
& \text { struct a souare as shown. } \begin{array}{l}
\text { spanning }
\end{array}
\end{aligned}
$$ struct a square as shown, spanning

unity on both axes. Its area is clearly unity. Now see if you can mark off an area under the curve also equal to that of the square. You can do this by using
another traditional engineer's dodge of another traditional engineer's dodge of
counting squares, in a number of verticounting squares, in a number or frips for convenience, adding nar-. row strips one by one, as required, from left to right. Obviously you're going to
have to move further up the baseline have to move further up the baseline
than 2, but how far? Yes, you've guessed than 2, but how far? Yes, you've guessed
that it will be to e! Why should this be so? The curve is
called a rectangular hyperbola, which suggests there might be a link here

Fig. 16. Finding e from the area beneath a
rectangular hyperbola. between natural and hyperbolic
logarithms. We can justify the method from what we have already discovered about such logarithms. Now we have
shown that the slope of the curve for $y=\log _{e} x$ is always $1 / x$. That is differentiation in the calculus, and the reverse process is integration or summing up,

WIRELESS WORLD, FEBRUARY 198 meaning graphically that we must find the area under the y / x curve. If then we
do this for the curve of $y=1 / x$ between do this for the curve of $y=1 / x$ between
two particular values of x, we are reversing the action and will finish up with the difference between the two corresponding values of $\log _{\mathrm{e}} x$. The area under the curve between values $x=1$ and $x=\mathrm{e}$ is thus $\log _{e} \mathrm{e}-\log _{\mathrm{e}} 1=1-0=1$
as already discovered. References
References
10. A. Hooper. Makers of Mathematics, Ch.V
pp. $169-193$ (The invention of logarithms), pp.169-193 (The invention of logarithms)
Faber \& Faber 1949. Faber \& Faber 1949 .
11. ed. C. G. Knott. Napier Tercentenary
Volume, , $1.1-32$ (Inaugural address by Lord
Moulton. The Moulton: The invention of logarithms, its genesis and growth), Longmans, Green 1915 12. Ref. 10, pp.127-132.
13. L. Hogben. Mathematics in the Making p.177, Macdonald 1960 .
14. J. Napero (or Napier). Mirifici Logarith14. J. Napero (or Napier). Mirifici Logarith-
morum Canonis Descriptio (A description of the marvellous law of logarithms), Andrew Hart (Edinburgh) 1614 .
15. Ref. 11, p.121 (G. A. Gibson: Napier's
logarithms and the change to ogarithms). 16. H. Briggs. Arithmetica Logarithmica,
William Jones (London) 1624 17. Ref. 6, pp.242-6 (Logarithms). 17. Ref..6, Pp.242-6 (Logarithms).
18. D. E. Smith. History of Mathematics
Vol.II, Special Topics Vol.II, Special TTopics of Elementary Mathe-
matics. matics, pp. 513 -523 (Logarithms), Ginn 1925 .
19. ed. E. M. Horsbrugh. Napier Tercentenary Celebration - Handbook of the Exhibition
pp.1-16 (G. A. Gibson: Napier and the invenCelebration - Hancoook of the Exhibition
ppi-1- \mathbf{l} (G. A. Gibson: Napier and the inven-
tion of logarithms), Royal Society of Edin burgh 1914.
20. E. Kasner, J. Newman. Mathematics and the Imagination, pp.78-85 (e), republished Pelican 1968.
21. Encyclopaedia Brittannica, Vol. 14 p. 304 21. Encyclopaedia Brittannica, Vol.
(Origin of natural logarithms) 1959 .

LOOP AERIALS

A careful exploration of the medium and long
wave broadcast bands wave broadcast bands leads to the conclu-
sion that their neglect by many listeners is much to do with poor receiver and aerial
performance as with band congestion and performance as with band congestion and
interference. The r.f. selectivity of most portables and tuners is so poor that attaching a long wire eerial (as advised by Mr McLeod ${ }^{1}$)
simply makes second channel interfer simply makes second channel interference
impossibly bad. However the resonant loop or the "H-field multtiplier" described by Mr
Schemel ${ }^{\text {overchem }}$ Schemel ${ }^{2}$ overcomes the twin problems of
insensitivity and poor r.f. selectivity, and with large well designed loops some astonishing results can be obtained with poor receivers. The price paid is that the aerial
needs to be tuned independently of the needs to be tuned independently of the
receiver, or left tuned to a preferred station. Nevertheless this is an excellent way of
widening the
widening the scope of listening experience.
Following experiments with
Following experiments with a feeder-
coupled loop (described in Wireless World many years ago ${ }^{3}$) a $2 \mathrm{~m} \times 1 \mathrm{~m}$ six-turn m.w.
tuned loop was set up and used "uned loop was set up and used either as an coupled with 300 -ohm cable to the ferrite rod of an f.m.//a.m. tuner. Favourable results that with some receivers even larger loops would be useful. Mr Schemel has shown that in view of inherent noise levels $1 \mathrm{Im}^{2}$ is the
largest size necessary. However I find that largest size necessary. However I find that
the $8 \mathrm{~m} \times 4 \mathrm{~m}$ single-turn outdoor loop now in use gives a better performance, probably because the very large signals help the a.g.c.
of the receivers to deal better with fading the receivers to deal better with fading,
This aerial is coupled to the ferrite rod of the tuner by a few turns, 2 cm in diameter, in series with the loop.
For long-wave reception a $2 \mathrm{~m} \times 2 \mathrm{~m} 15$ -
turn loop is used, situated in a loft and coupled by means of a single turn to 80 -ohm cable. At the receiver end there is an 8 cm side of the receiver case with tape. The receiver itself is of the Hong Kong transistor
sort, which in fact cost less than the wire and sort, which in act cost less than the wire and
cable used for the aerial. A low-pass audio filter with a deep
$(-30 d B)$ notch at 8 kHz is in circuit through $(-30 \mathrm{~dB})$ notch at 8 kHz is in circuit thro
out and is considered indispensable. Finally a comment on the operation of the heory (p.51) up to the final paragraph where says that the enhanced field of inergy, and quadrature with the incident field. This cannot be generally correct since the phase the loop current passes rapidly from positive to negative (or vice versa) as the
circuit is tuned through resonance. It seems better to suppose that the loop acts as a ansformer, making the absorbed energy
available at an impedance different from that of free space. If we regard the loop as parallel tuned, this impedance is very high, so that he ferrite rod of a receiver has only to be
ightly coupled to the loop to absorb a useful proportion of the energy from it (see Mr Schemel's footnote, p.51). On the other hand
a small coil in seris with the a small coil in series with the loop makes the energy available at very low impedance
These are complementary points of view, the
former being more appropriate when the receiver is near the middle of a large loop, the latter when it is near one of the side
R. A. W. Hill
Glasgow College of Technology
Glasgow G4

\section*{References} | 1. McL |
| :--- |
| 2. 197. |
| 2. Sche |

2. Schemel, R. E." "The 2. Schemel, R. E. "The Loop Aerial Revived",
Wireess Wordd July 1999.p.4.-52.
3.inil, R. A. W. Wireless World, letters, February
3.

The author replies:

Mr hill, like myself, is obviously a loop observations of my own to those in his letter. Coupling a long wire into a modern radio reasons put forward in the original article, ecause transistor mixers are much mor liable to overload than their valve counter
parts. Both overload and the decreased parts. Both overload and the decreased r.f
selectivity have the effect of producing aud ible beats and cross modulation. Separate tuning of the loop increases
selectivity but only improves sensitivity when coupling to the first tuned circuit insufficient. Since this useful technique may e tried by some readers, they are cautioned Mr Hill's installation is undercouppled, sinc he observes that quite large loop a areas give a noticeable improvement in reception; it sensitivity, and I can confirm that a large tuned loop used in this way works wonders Notwithstanding this, my own experience with a good receiver and a closely coupled
untuned loop would indicate that an area of m^{2} is more than adequate.
Finally, Mr Hill observes
Finally, Mr Hill observes that the phase of oop is tuned through resonance. This is indeed the case, and exactly at resonance the phase angle is 90° as stated in the article.
Readers who constructed the field multiplier may have noted that the loop can almost suppress the signal rather than boost it at a ritical tuning point. This occurs when the ${ }_{R}$ almost cancels the incident

THE INTELLIGENT PLUG

 I was interested in the article "The intelligenplug" in the December issue In your note you refer to p.m.e. and I hope you will not mind if I mention that this stands for protective multiple earthing.
Where the electricity supply
Wplied this method of earthing to its has applied this method of earthing to its dis-
tribution system, the consumer will have been offered an earth terminal which is, in
fact, a connection to the neutral of the fact, a connection to the neutral of the
electricity supply system. The injection of a carrier frequency between the neutral and earth on the consumer's installation will
effectively be short-circuited at the incoming effectively be short-circuited at the incoming
point of supply in that the consumer's earth
conductor and neutral are both connected to the incoming supply neutral.
In an electricity distribution system where the system neutral is earthed only at the
distribution sub-station, the neutral and earth connections will again be short circuited but the impedance loop, al seen at
the consumer's installation, will be sufthe consumer's installation, will be suf
ficiently large not to significantly attenuate the injected carrier frequency.
the injected
I. Elliot
Eastern Elec
Eastern Electricity
Owestoft
Lowestoft
Suffolk

COMMITMENT IN WORK

 It is heartening to find an editor who is whatever degree) the level of awareness of his readers. Your excellent editorial in the January 1979 issue on military electronics and more recent ones on the unpleasan social consequence of our profession, have been salutaryWhat has
far, though, is the absolutely imperative need for individual commitment. This applies right across the board - including involvemen
with "defence" projects, nuclear powe ("clean, safe and cheap"), broadcasting and telecommunications (information manipula-
tion). .. It is only too easy for the average engineer to look no further than the rim of his coffee cup; he has a wife and kids to support, he expects a certain standard of him: the fact that his society is morally bankrupt, supported on very shaky economic
foundations foundations and in imminent danger of
catastrophic collapse is comething that doesn't want to think about, let alone do anything about. Yet society is only made up or individuals; if individuals will not rouse
themselves (no-one can do it for them from their ostrich posture no improvement in society's state can come about.
Commitment on this personal level can be
painful. For instance, if you work in socially harmful areas you are restricting the variety of jobs open to you, and
you may be forced to accept a low you may be forced to accept a lower salary, standard. The latter also applies if you wish to be more conservative, say, in your use of energy; electric heating is the most wasteful (except perhaps writing letters to magazine editors,, but it is also the most convenient. The commitment to a saner way of living is
fundamentally the same in either case The misuse of technology, and electronics in particular, which you have so accurately "grass-roots" awak ing of corrected by a individual level.
There are, fortunately, signs that this is
happening happen employment agency that it was by no means uncommon for candidates to specify
"no military involv "no military involvement", on their job application forms; perhaps the almost con-
tinuous recruitment adverts from the likes of

MSDS, Ferranti, Plessey and GCHQ are in work on such projects. On a wider scale, the extent of interest in renewable energy surces and of opposition to the nuclear jug people. Perhaps you could help nurse it along? One point on your editorial "Trickle,
rickle little chip" (November 1979) concerning alternative (or "appropriate") technology for the developing nations. Firstly,
alternative technology is not concerned alternative technology is not concerned
primarily with producing goods - goods are
not what the Third World needs. What it needs are reliable means of feeding and sheltering itself, so that AT is generally
aimed at the agricultural, building and energy supply :areas. For these areas
(particularly the first two) labour intensive techniques are more appropriate than capital still have a part to play. Alternative technology should not necessarily exclude sophisti-
cation where it is justifiable and applicable. cation where it is justifiable and applicable.
Secondly, there is the danger that high technology produces a gap between its users and its end products, so that there is no
feeling of identification between the maker and what he has made. This gap has been recognised as a major source of dissatisfacand it is one problem that the developing and it is one problem that the de
countries should try hard to avoid. Tim Williams
Tunbridge Wells
Tim Williams
Tunbridge Wells
Kent
SCIENTIFIC COMPUTER I have followed with great interest the
articles on the scientific computer by John articles on the scientific computer by John
Adams (April-September 1979). As an elec-
. this as an ideal project to enable me to this as an ideal project to enable me to
become updated. I accordingly constructed the hardware and now, with a limited amount of experience in "driving" it, I would
like to offer a number of points which I feel are worthy of discussion:
(a) The "number cruncher" approach
seems to me to be so very seems to me to be so very logical that it is
surprising that more systems do not apply it. It must surely set the pattern for the future. (b) I would be very interested to see de-
tailed explanations of many tailed explanations of many more of the
machine language sub routines, particularly machine language sub routines, particularly
those associated directly with the "number cruncher".
(c) The

The Adams computer is already excel-
value for money, but could, I feel, belent value for money, but could, I feel, be-
come even better with hupgraded monitor and Basic programmes. For example, therer is no
cursor, or backshift/delete facility (except in cursor, or backshift/delete facility (except in
graphics). There is no apparent means graphics. There is no apparent means
whereby a list of results can be fed into the whereble of a programme from a peripheral.
midde orhaps Mr Adams can be persuaded to look
Per into this.
(d) Software programming in BURP is obviously somewhat limited at the present
time. Could we have some information on time. Could we have some information on
how to set about writing our own, or conhow to set about writing our own, or converting
or the
z80? Z Ino?
I were to ponder longer no doubt I could
ind produce a long list of of her desirable features
and information requiren and information requirements. I hope, how-
ever, that I have said sufficient to convince ever, that I have said sufficient to convince
you that there are many engineers like you that there are many engineers like
myself who need to familiarise themselves
with these latest techniques but will not have
her the time or the opportunity to atten device manufacturers. We must, therefor are faced with a bewildering array of tex books - and who can guide us in our choice As professionally I will be designing micro-
processor controlled systems, machine processor controlled systems, machine
language is of paramount importance Articles on the approach to and construction of typical programmes would be of consid press the various publications with "Com puters" in their title, excellent though they may be, do not approach the subject from the design engineer's standpoint. There does,
therefore, seem to be a void which I hope that thererore, seem to be a void which I hope tha Wireless World can fill. What is really needed is a "Foundations of Microprocessor an
Peripherals" series by a "Scroggie of th micros"; perhaps he already exists in John Adams. These could be supplemented by actual applications covering all spheres, no just the computer as it is popularly unde
I hope that I may have said sufficient to convince you that far from being minority readership, microprocessors etc. are of con
siderable interest to a high percentage of siderable interest to a high percentage of
your readers, many of whom have no proyour readers, many of whom have no pro
fessional interest in "wireless" these days.
J. W. H. Freeman J. W. H. Freeman
Red Forge Ltd

Red Forge L Redditch

The author replies:
May I take the opportunity to thank Mr comments on my design for a computer which was published in your Aprilepeat value in drawing up the specification or the monitor described in this sissue, as well as giving food for thought for further ones.
With so many users of these machines. With so many users of these machines, it
would now, I think, be a good time for som individual or group to set up a users' club to distribute a newsletter and, perhaps, organ
ise meetings etc.*
Might I also re
eply to Dr Whittington's letter published last month. I think it a mistake to look for 'mainframe' performance per cent of the price of such equipment Constraints on format, language (such as
hey are) and speed are thus inevith they are) and speedd are thus inevitable. I
must take issue with Dr Whittington on point though, as, whilst it is possible (just!) to make a FOR loop take 200 ms , a more typical time for a loop covering, say, 10 program
lines is 60 ms . To put the machine in the context of the so-called 'benchmark' tests, which have been applied to five commer-
cially available machines, for BM5, which

$$
A=\frac{K}{2} \times 3+4-5
$$ for $\mathrm{K}=1$ to 100 , the mean execution time was

27 f for the 5 , as against 21 s for the Scientific
Coner computer. A monithr which in in the devedown to 13.8s. Should one of the semicon cruncher' mhich can run at a faster clocking rate than the 800 kHz which the great majority of MM57109s seem to manage, at a reasonable price, then these times, measured
at that clocking frequency, should be that clocking fre
reduced even further.
After, perhaps, more experience with the
monitors Dr Whittington will find them
asier to use. I must admit to a mistake in the egister sisplay facility which is present in sue. The COR command isn't quite so angerous as is suggested as it does list back all the addresses at which it makes correc
tions. Experience has shown that using COR or MOD as it now is, and then checking back or unwanted changes using this address list avoids the usual problem when, say, re-
ddressing a block of instructions for loading into an e.p.r.o.m., and that is missing one or vo of the alterations required. MOD has a second use too, in that by changing the byte
XX to YY, the computer just lists the ad dresses where that byte may be found. Finally, there is a mistake on the p.c.b
. pplied which some constructors may not be aware
The 470 -ohm resistor adjacent to the 'Dat h' l.e.d. connector pin at the back of the pin wired directly to pin 12 of the 4013 i.c. The e.d. will then perform as originally intended. ohn H. Adams
Radlett
Herts
"We would be glad
suggestion. - Ed.

VHF RADIO AND ITS PROGRAMMES
ay I respond to Mr MacKay and Mr Watson October 19
In the early days of v.h.f., the BBC certainly ried to encourage listenerrs to change over to hese channels, for very good reasons of al broadcasting would be on v f f only, with all broadcasting would be on v.h.f. only, with ansmissions would be abandoned. In the event, the public in general have
been most reluctant to make the change and
 2 years later) used by only a minority of choners. Accordingly, it was a sensible .h.f. and to confine schoools programmes to v.h.f., since this offered good coverage for the
eucational material while inconveniencing educational material while inconveniencing
as few members of the general public as possible. It is perhaps worth emphasising that the
BBC is in no way on the defensive about the BBC is in no way on the defensive about the
nclusion of educational material in our programming; together with information and entertainment, education is one of the programmes are clearly of considerable programmes are cleary of considerabie
mportance in their field and the Open University is an imaginative and successful
vert ported by the Corporation.
The realities of the situation are therefore as follows. Educational broadcasting merits good coverage throughout the country; it is
on v.h.f. for good reasons and could not be ransferred to medium or long wave without nconveniencing far more listeners and nulliequipment by schools and others; insufficient .h.f. channels are available to separate educational from other programming.
Turning now to more positive matters, Tlurning now to more positive matters, it is
clearly very much in the BBC's interests that the programmes which we make shall be
received as well and as widely as possible. We received as well and as widely as possible. We
are very conscious of the dissatisfaction
caused by the enforced sharing of channels
by educational and other programmes and we examine most carefully what can be don relieve this. The most satisfactory long term solution is the provision of more chan-
nels by extension of the v.h.f. broadcastin band. This has been an important factor i the World Administrative Radio Conferenc agreed it must be some years before existing mobile users (police, fire, ambulance etc.) can
be moved elsewhere be moved elsewhere and new broadcastin
networks created. For short-term relief we networks created. For short-term relief w
are looking into the feasibility of transferring a proportion of schools broadcasting to the
night hours, with time-switch recording in night hours, with time-switch recording in
schools for replay the next day. Furthermore we have concentrated much of the educatio nal programming on to the Radio 4 v.h.f channel, avoiding Radio 3 where musical
items in particular benefit from high quality stereo transmission. As a result, educationa material on Radio 3 v.h.f. is in general transmitted outside normal programme hours,
with the exception of an hour and a haif on weekdays in the early evening. The sharing 2 of a single v.h.f. channel by Radio 1 and Radio 2 is a separate problem, to which the only
solution would be an additional v.h.f. chan-
nel. I would not presume to challenge Mr
MacKay's catalogue of shortcomings MacKay's catalogue of shortcomings and
perhaps I am indeed fulsome, irrelevant, contradictory, evasive, arrogant and smooth. Although anxious to please, I have found it within the compass of a single letter, but I have tried as best I can to set out the facts which, unwelcome though they may be,
make up a problem for which a quick and easy solution is not available.
D. P. Leggatt e. P. Leggatt
Head of Engin

Head of Engineering Information Dept
BBC, London W1

* Owing to a clerical error the publication of this letter has been delayed. Apologies
the correspondents concerned. - Ed.

PERCEIVING DIRECTION IN SURROUND SOUND The article by Ken Farrar on the Soundfield Microphone (October and November 1979) prompts some observations on the develop-
ment of surround sound which I feel it timely to make. Most technical developments tend 10 evolve from previous practice but it is
always wise as new technology becomes available to take a long hard look, unhindered by the past, at the means and at the
objectives. It is therefore to be hoped that before standards are finally set the full
betion betore standards are finally set the full
potishial Ambisonics is properly esta-
blis. bished.
Having been intrigued by the somewhat
puzzling failure of binaural reproduction to recreate concrete centre-front sound sources, the writer has carried out many xperiments in the field of perception or
direction by our sensors. I use the word sensors' rather than ears because I now hav doubts as to whether orr outer ears are the The following
white noise as a sound source, there was no difficulty in locating the direction of its origin with one ear effectively closed. This appears
to indicate that there are clues on which the brain can operate to determine direction
other than the generally accepted ones of

UHF CITIZENS'BAND IN AUSTRALIA
It is not recorded in any history book that King Canute sat on an Australian beach trying to
curb the tide (your editorial, September 1979 issue). But recent Australian history has
shown that our telecommunication authorities shown that our telecommunication authorities
and govermment can do the and goverrment can do the same and succeed!.
Yes, c.b. is good fun, and the population has
the right to expect a small part of the spectrum the right to expect a small part of the spectrum
to be allocated for personal use. But our

Canuuses here were far more canny in trying to beck, they asked - can we get the sea to
recede by providing another beach? Instead of recede by providing another beach? Instead of
asking the sea, they asked our population and asking the sea, they asked our population and
industry. They asked if there were other ndustry. They asked if there were other
frequencies which could be used, if equipment
could be designed and manufactured within one year at a price competitive with its 27 MHz
s.s.b. counterpart. They asked if the s.s.b. counterpart. They asked if the coverage
on another band of frequencies would be equivalent to the local coverage of 27 MHz .
And, most importantly, they asked what inAnd, most importantly, they asked what in-
terference problems could result from the use of other frequencies.
The result was the introduction of the
world's first u.h.f. c.b. service; 1 MHz of specworld's first u.h.f. c.b. service, 1 MHz of spec-
trum for public use, 40 channels that anyone cum for public use, 0 channels that anyone
could use anytime, anywhere. All the answers to the questions have been fully vindicated. It is better service with minimum interference,
and equipment was designed and produce and equipment was designed and produced
within the period required and at a competitive price. What is more, it has injected sanity into an area which was fast becoming imbecilic. It
has provided local industry with a new market, and employment and export opportunities.
New fraternities are New fraternitien a are springingortunities. Long
distance truck drivers are enthusiastic enterprising roadside cafe onthers a dvicertisise and
the fact that they are on the air on channel ' x^{\prime} and will accept messages to pass on to othe cluvellers. Sporting and particularly boatin
cluk taking to the medium. The flexibility of having 40 channels from which to select a will is a real benefit.
capable of providing the amateurs a 70 cm unit and two frequency simplex, a fact that has no escaped the UK amateur, as this unit is alread
on the $U K$ market Your editorial im is no other choice. The antipodean experience
has shown that UK to consider alternatives, but it will for the late if the Home office procrastinates. As we know from the multimillion dollar disaster in he States and our own experience, if the entrepreneur will provide it legally or illegally You will then be stuck with it, to the continued radiocommunication users in general Your columnist Mixer's notion in the
November 1979 issue that the record industry's clam for a levy on an tll blank tape cass-
ettes and recorders "would be just sonable, and stand just as much chance of being a ccepted" as a similar levy charged on
the use of photoconying the use of photocopying machines is not as
incredible as Mixer seems to think
not in scandinavia.
Backed by existing copyright laws, very
similar to those in force in Britain, the Techsimilar to those in force in Britain, the Tech-
nical and Fiction Writers Union hes nical and Fiction Writers Union has effec-
tively banned duplication of printed material
by photocopy-machine "until by photocopy-maccainion of printed material
has been negotiated." "Their present fee has been negotiated." "Their present claim is
3.3 pence per copy. In Sweden the Govern 3.3 pence eper copy. In Sweden, the Govern-
ment is already paying writers 0.18 pence per copy, based on statistics of the copies taken
in universities, school, public libraries
R. B. Hooper
Philips - TMC Ltd Philips - TMC Ltd
Clayton Victoria, Australia

LEVY ON COPYING

 not in Scandinavia. no universities, school, public libPorstrann
Norway

Post Office introduces microprocessor pay-phones

Europe-wide information retrieval uses packet switching

On-line information retrieval services hroughout Europe - the kind using computerised data bases-are now being linked
ogether into a comprehensive network by a together into a comprehensive network. bny
dedicated telecommunications system. Any professional worker with access to a
Teletype-compatible data terminal (with Teletype-compatible data terminal (with
printer or v.d.u.), a telephone line and a password for the system can retrieve information from general and specialised data
bases in a number of European countries at a bases in a number of European countries at a
standard tariff which is independent of distance. By the end of 1980 about 140 such data bases are expected to be available. To make
connection, the user has to dial on his connection, the user has to dial on his
telephone one of the computerised information services in his own country which is
linked to the system. These are known as
"nosts" "hosts" and in the UK, for example, one of
hem is BLAISE, the British Library's Automated Information Service. Another
UK host is Infoline, which, incidentally, will be bringing into the system the well known
IEE Inspec database of physics, electronics, computing and mathematical information. This European link-up called Euronet-
DIANE, was opened in November last year. DIANE, was opened in November last year.
Initiated by the European Communities Commission, it is intended in the first instance for the benefit of the present nine
Common Market countries but probably Common Market countries but probably
later will bring in S witzerland, Norway, Sweden, Spain, Austria, Yugossavia and
Greece. Euronet is the hardware part. Greece. Euronet is the hardware part,
operated by the telecommunication authoroperated by the telecommunication author-
ities of the EEC. Its backbone is a dedicated high speed data transmission system
perating at $48,000 \mathrm{bit} / \mathrm{s}$ on the packet operating at 48,000 bit/s on the packet
switching principle (in which packets of switching principle (in which packets of
digital data are sent by the best route at a
given given time to achieve the most efficient use
of available lines - often interleaving of available lines - often interleaving
packets for different addresses). The international lines carrying this data stretch across Europe from Dublin through London, Paris
and Frankfurt to Rome, with branches off to Amsterdam, Copenhagen, Brussels and Luxembourg. Exchanges for packet switching are located in London (in the Post Office's
Electra House, Temple Place, London WC2, Electra House, Temple Place, London WC2,
which also houses the management centre which also houses the management centre
controlling the day-to-day operation of
Euronet) and in Paris, Frankfurt and Rome. Users' terminals are connected through the
hosts to this backbone by slower speed data hosts to this backbone by slower speed data
transmission on public or leased lines wor-
king at anything from king a anything from 110 bit $/ s$ to $9,600 \mathrm{bit} / \mathrm{s}$.
A detailed description of Euronet is A detailed description of Euronet isseiven by
P. T. F. Kelly of the UK Post Office in The Radio and Electronic Engineer (IERE Journal) for November 1979. (See also "Switching
into European data" by DE Hadley and A. C. Barnes, Post Office Telecommunications C. Barnes, Post office
Journal, Autumn 1979). We understancand there
is some possibility that viewdata terminals is some possibility that viewdata terminals
(Prestel in the UK) could be made compatible (Prestel in the UK) could be made compatible
with the system.
DIANE is an acronym meaning Direct

Information Access Network for Europe and is the organisation of the various on-line information services themselves - the soft-
ware side. At present there are 23 hosts ware side. At present there are 23 hosts,
offering a spectrum of scientific, technical medical, legal, social and economic knowl dge. Inquiries about it can be made t Euronet DIANE Information, Jean Mónne
Building: B4 009, ECC, Luxembourg (Grand Duchy). Local enquiries about Euronet in the UK can be made to the Post Office contact Mr T. Lake, International Telecommunica tions, Landsec House, New Fetter
London EC4 (tel: $01-5834945$ or 8832). Many of the on-line information retriev
systems available through DIANE use different sets of commands. The potential user
is therefore faced with the possibility of is therefore faced with the possibility of
having to learn several search languages. But recently a study carried out for the ECC by
Scicon in the UK he Scicon in the UK has devised a common
command language which allows users to command language which allows users to
search on different retrieval systems using one language. This has been accepted as a
formal guideline for use by the hosts and is formal guideline for use by the hosts and is
already being implemented by some of them. arready being implemented by some of them.
The standard command language is not meant to replace existing sophisticated
search languages but as an alternative to search languages but as an alternative to
help users who need to search on a number of help users who nee
different systems.

CEI honours Sam Fedida

One of the UK's foremost engineering acco-
lades, the Macrobert Award, has been given ne of the UKs foremost engineering acco-
lades, the Macrobert Award, has been given
to to Sam Fedida, well known to readers of this
journal as the author of a series of articles (Wireless World, February to May 1977 and April to June 1978) dealing with Viewdata the information system using telephone and
television in a communication/display comtelevision in a communication/display com-
bination he had invented while working as a Post Office research engineer.
The prize of $£ 25,000$ and the MacRobert
Medal were presented to Fedida by the Duke of Edinburgh in his capacity a founder president of the Council of En gineering Institutions (CEI) at Buckingham
Palace on 5th December 1979. The Palace on 5th December 1979. The
MacRobert Gold Medal was also presented on this occasion, to Post Office Telecom-
munications for the development of Prestel munications for the development of Prestel
the first public Viewdata service in the world

Sam Fedida was born in Alexandria, Egypt,
in 1918. He was educated in England and in 1918. He was educated in England and
graduated with a B.Sc.(Hons) at Imperial College, London, and during the second world war served as a radar officer in the
R.A.F. After the war he joined Marconi, R.A.F. After the war he joined Marconi,
becoming a development manager in 1960 becoming a development manager in 1960
and Assistant Director of Research in 1965.
He joined the Post Office Research Deart He joined the Post Office Research Depart-
ment as Manager of Computer applications ment as Manager of Computer applications
in 1970 and soon afterwards invented the Viewdata system, which he demonstrated
publicly in 1975 , He had publicly in 1975 . He had obtained an M.Sc. in
computer sciences at Birkbeck College, Loncomputer sciences at Birkbeck College, Lon
don in 1973. The MacRobert Award has traditionally
been awarded for the development of a novel been awarded for the development of a novel
engineering project or process and has engineering project or process and has
shown a general bias towards hardware However, the last two decades have shown
that software aspects that software aspects of complex electronic
systems are now at least as technically systems are now at least as technicalit
challenging and this award tends to indicate the CEI's awareness of the growing
significance of information retrieval systems.

PET automatically

 checks impedanceA combination of instruments including a
Rohde and Schwarz ZPV vector analyser, signal generator and a Commodore PET computer can, according to Aveley Electric, a
British fistributor for Rohde and Schwarz, be used for automatic impedance measurements. Frequency range covered is from 0.4
to 1040 MHz and the test permits automatic voltage measurements of magnitude and phase, measurement of S parameters,
impedances and amimittances as well as group
. impedances and admittances as well as group
delay measurements. Measured values are
displayed on the screen of the PET or are fed displayed on the screen of the PET or are
out via an IEC bus-compatible printer.

A completely new type of Post Office pay-
phone, featuring microprocessor control and a numerical key-pad instead of a rotatable
dial, began trias on December 10. This marks
the beginning of a Post dial, began trials on December 10 . This marks
the beginning of a Post Office programme to re-equip coin-operated call boxes and an
initial order of 100 of the new units has been initial order of 100 of the new units has been
placed with Agitelco, a member of the AGI group.
Unlike the conventional pay-phone, cash is Ulike the conventional pay-phone, cash is
inserted before the required number is keyed
and are credited to the caller and this amount is indicated on a digital display. As the call proceeds the cost is deducted from the
amount in credit and 10 seconds before the credit runs out the visual display requests more money, the display being a accompanied
by a "bleep" on the line. The microprocessor. calculates the rate from meter signals received from the local exchange in the
conventional manner disconnets onventional manner, disconnects the call if teins. The rate of charge is similar to that of
core the conventional pay-phone and depends.
upon distance and time of day; a "follow-on" upon tistance and time or
facilitis is include where, upon pressing a
button, further calls can be made using credit still in store.
Operator c

Operator calls can still be made although hese will be restricted to the UK a rea in
tially and on these calls another "bleep ignal tells the operator that the call is coming from a new "blue payphone", so
called because the phones have all instruc called because the phones have all instruc-
tions printed in blue. Each unit is housed in a tainless steel casing and the Post Office maintains that the microprocessor approach
used in this unit offers advantages including used in this unit offers advantages including
ease of installation, faster servicing resulting rom the "watchdog" action of the m.p.u. in porting faults immediately and overall special call-charging equipment at present ecessary at local exchanges.
During the trial period the During the trial period the Post office will be carrying out research into customer reac-
tions and the extent of use of the new phone compared with that of the conventional type,
with the intention of a realistic assessment of the quantity needed to cover the first phase of modernisation.

Aiwa to set up "micro" hi-fi plant in Wales Speaking in response to Aiwa's decision to
set up a British subsidiary of the Japanese company, Lord Trenchard, Minister of State for Industry said, "I am delighted at Aiwa's
decision to set up a plant in the UK decislon to set up a plant in the UK... Aiwa
will be the first manufacturer of miniaturised will be the first manufacturer of miniaturised
hi-fi in the UK and the first Japanese audio manufacturer to come here.
In fact, both Toshiba In fact, both Toshiba and Matsushita
preceded Aiwa in setting up plant in the UK, although this is the largest projected under-
taking taking in the field of "micro" hi-fi here, the
estimated cost being $£ 2$ million drawing estimated cost being $£ 2$ million, drawing
$£ 600,000$ of British government aid. "Micro" L600,000 of Brititsh goverrment aid. "Micro"
hi- -if employs microelectronic circuits in a
comper complete package of about 1 ins circy byins in a a
the UK manager, Mr Stephen Chorley exthe UK manager, Mr Stephen Chorley, ex-
pects 50% of output from the Newbridge South Wales, plant to be exported. About
half of the components used will be British
and at the start of production in June 1980 ,
between 70 and 100 new jobs will be made avaialot to ocal poente. The west Deve. lopment Agency has provided the factory
a 25 -year lease to the Japanese company.

Zenith buys Heath

Zenith Radio Corporation has completed the purchase of Heath from Daystrom Inc, a
wholly-owned subsidiary of Schlumberger Ltd. Heath, the Michigan-based electronic kit manufacturer, will be operated as a wholly-
owned subsidiary of Zenith. New Zenith subsidiaries have been established to operate the 55 Heathkit Electronic Centres in the
United States and the Heath business in United States and the Heath business in
Canada and Europe. Daystrom Inc, was
cquired by Schlumber Canada and Europe. Daystrom
acquired by Schlumberger in 1962.

Microprocessor and

Electronics Centre

A showroom for electronics manufacturers,
funded by private and ICFC money wer opened by private and ICFC money, was
Trenchard in December Jeremy Prosser, of Prosser Scientific Instru-
ments, had the idea of a base for electronics
companie companies to show their wares in London, to
conduct intervies conduct interviews and to meet their poten-
tial customers. One or two economists and marketing people evidently agreed with him and combined with him to set up the venture
in the World Trade Centre in East Smithfield, in the World Trade Centre in East Smithfield, near the Tower of London.
A coincident exhibition helped to set the
scene for the opening ceremony (it actually scene for the opening ceremony (it actually
opened its doors in September, but the celebratory junket was delayed a fe felt, of the type to inflame the imagination of
the civilised world. Examples of the ways in the civilised world. Examples of the ways in
which electronics can enrich our lives and
widen our horizons included the K9 dog machine from the Dr Who television programme, a toy train controlled by a micro-
processor in a manner no one present felt able to discuss, and some 'Star Trek'-inspired
'phasors', which made funny noises. Mea 'phasors', which made funny noises. Mea-
suring instruments were in evidence, as were microcomputers in various guises. Lord Trenchard's opening speech was a
worthy example of its kind, impressing on all us were worth and spelling out to for al the disastrous consequences of failing to do so.
The effect of the homily was The effect of the homily was not heightened
y his aside, on leaving the still-live my his aside, on leaving the still-live
microphone, that he supposed he was now
going to be shown the exhibits, which he ouldn't, of course, be expected to under tand. Lord Trenchard is a Minister of State The Microprocessor and Electronics Censeries of small exhibitions throughout the

Radio amateurs provide communications in Indian disaster

Radio amateurs provided emergency com
munications in disaster-struck Morvi, India during the afternoon of August 11 . Unusually heavy rains caused one of the Macchu dam
to burst at both sides of the spillway, engul to burst at both sides of the spillway, engul
fing the entire city which had a population of 75,000 people. A wave seven or eight feee high
devastated 80% of the buildings and left an devastated 80% of the buildings and left an
estimated 10,000 people dead. The water estimated 10,000 people dead. The water
continued to rise to about 15 feet and when these flood waters receded, the streets and
houses were under 14 feet of mud. Coses were under 14 feet of mud cut off almost immediately and even towns within 10 to 15 km away remained unaware
of the tragedy for 24 hours. When the news finally got out, India's Home Guard from the city of Rajkot, 70 km away from Morvi, were the first to reach the devastated city and they
set about extricating the wounded drom set about extricating the wounded from the
debris, disposing of bodies and organising relief.
The Federation of Amateur Radio Societies of India and the Radio \& Electronics Society
of India, realising that communications would be needed, held an emergency meeting and within three days volunteers were
mobilised, equipped with transceivers, antennae and other communications equip. ment, borrowed from various amateurs. Flying indirectly from Bombay to Rajkot, a
small team of radio amateurs joined other helpers. One of the local anateurs contacted the Home Guard and introduced the District
mandant indicated that these facilities were just what they desperately needed, their own
vhf equipment being totaly inadequate to vhf equipment being totally inadequate to Commandant's office at the Home Guard's base at Rajkot, a jeep was made available and was quickly fitted out with mobile hf and two-metre equipmen. The two-metre portable equipment in par-
ticular, proved to be invaluable to the king parties who went out into the mud-filled lanes.
The amateur's facilities were used by the Red Cross and many other relief groups; they
gave up 18 days of their time to provide emergency communications round-thieclock. When the telephones were reconnected between Morvi and Rajkot, the
amateur's usefulness diminished and operaamateur's usefulness diminished and
tions were wound up on September 5 . The amateurs obtained a good deal of
satisfaction from the provision of emergency communications but they were also quick to point out that they had come to realise just how unprepared they were for the event and how lacking they were in suitable equipment
and trained manpower. Their hope now is and trained manpower. Their hope now is that, with government and other help, they
can improve this situation. A story like this
must encourage must encourage organisations such as RAENET (Radio Amateur Emergency Net-
work) in the UK and other services even if they do find little opportunity to put it into
practice.

Report says "Space for 12 more radio

stations in London"

A study of v.h.f. spectrum availability in the
London area, carried out by the former IBA London area, carried out by the former IBA
engineer Fred Wise and commissioned by the Community Communications Group (COMCOM), reports that there is space for at least
a dozen small radio stations in the area. The a dozen small radso stans in the area. The
report splits possible further coverage into report splits possible further coverage into
three categories including small stations
with three categories including small stations
with a coverage radii of about 1.5 km , medium size stations covering a sector of the
city and larger stations, aimed at specialist interests, covering the entire city. The forthcoming extension of the v.h.f. to 108 MHz (see News columns, January 1980 to
Wireless World) as a result of allocations at in the first category, four in the second and one in the third would be possible, but the
latter would have to compete for space with both the BBC and the IBA. Emphasis is placed in the report on the need for adequate representation of com-
munity radio interests in any plans to develop local or national services in the v.h.f. band. Commenting on the report, a spokes-
man for COMCOM said "We are deli hhted to have expert confirmation that our propohave expert confirmation that our propo-
sals for a chird force" of small,
democratically-controlled, non-profit radio democratically-controlled, non-profit radio
stations are technically feasible. Over the stations are technically feasible. over the
country as a whole, this finding shows there is rom for many more stations than is
officially admited,"

Hoff awarded microprocessor prize

The Franklin Insitute has awarded the Stuart
Ballantine Medal, one of the United States' most coveted awards for scientific and tech nical achievements, to Dr Marcian E. Hoff,
for his work in developing the microprocessor. In addition to his work on digital microprocessors, Dr Hoff, or Ted Hoff as he development of the first high-density memories for both mainframe computers and
small computers, and more recently the small computers, and more recently the
development of the first analogue microprocessor. Between 1962 and 1968 , he worked
on computer equipment design as processor.
on computer equipment design as a research
associate at Stanford. In 1968 he joined the
then newly-formed Int applications research manager where he worked on a variety of microprocessor and
memory devices. In 1969 he proposed memory devices. In 1969 he proposed the
microprocessor architecture and his work led to the production of the first microprocessor, the 4004, in 1971 . Since 1974, Ted Hoff has specialized in
Intel's telecommunications products, con tributing to the development of 1.s.i. circuit
technologies as used in the a technologies as used in the a.-to-d. and d.-to-
a. converiers employed in telephone coder a. converiers employed in telephone coder-
decoder circuits and the 2920 analogue
microprocessor decoder circuits
microprocessor.

NEWS IN BRIEF

The sixth European Conference on optical of York fram 16 th to to 1 held at Septemberers Unity
The papers presented will cover fibres and The papers presented will cover fibres and tors integrated optics, equipment and techniques and total systems. The deadline for
abstracts is 31 st March 1980 and communications regarding the conference
should be addressed to Conference Dept, The should be addressed to conference Dept, The
Institution of Electrical Engineers, Savoy
Place Place, London WC2R 0BL

Six training modules, which Texas Instruments describe as a complete introduction to
microprocessor technology, are being run by
hem them as an extended range of courses at their
headquarters in Bedford. Subjects covered include an introduction to microprocessing, assembly language programming, micro-
processor software development using processor software development using a
diskette-base diskette-base operating system, advance
microprocessors, Pascal language program-
ming Pascal executive microprocessors, Pascal language progral executive runtime support and
ming
target system debuging target system debugging. A brochure
covering the range of courses is available from Mike Hughes, Microprocessor Training
C entre, Texas Instruments Ltd, Manton Centre, Texas Instruments Ltd, Manton
Lane, Bedford MK41 7PA.

South London College is running a short course of nine lectures on receiver a coders,
(Teletext), to be held in the lecture theatre on
conse consecutive Tuesday evenings from 6.30 to
8.30, starting on January 29th 1980. Slides and demonstrations will be features of the
lectures and the course is intended for lectures and the course is intended for
television and telecommunication techni-
ciens cians and engineers. Fee for the course is $£ 7$.
Contact A. A. Rowlands. Course Organiser Contact A. A. Rowlands, Course Organiser,
South London College, Knights Hill, London SE27 OTX.

The 65th convention of the Audio Engineering Society is to be held at the Hilton
Hotel, Park Lane and the Park Lane Hotel from Feb. 25th to 28th, 1980 . Pre-registration
fees are non-members $£ 17.50$ members fees are non-members $£ 17.50$, members
$£ 12.50$ and student members $£ 3.00$ (student
non-members $£ 4.50$. Fees at the door are non-members $£ 4.50$). Fees at the door are
non-members $£ 20$, students $£ 6$, members $£ 15$ and student members $£ 4$. Details from Laurie Fincham, K.E.F. Electron
Maidstone, Kent ME15 6 QP .
B. Sandham, electrification planning engin-
eer, British Rail Baard, will present ""future eer, British Rail Board, will present "Future
Developments in Electrification (Railways)"
at a joint IEETE/TTEME meeting to be held at the IEE, Savoy Place, London WC2 at
at at the iex, Savor Place,
5.30 on
The IEETE have two optical fibre events
planned for February 1980. D. J. Blake of the planned for February 1980. D. J. Blake of the
Post Office, will presen "Optical fibre comat 7.30 pm on February 14, and an "unconfirmed" speaker will present "Optical fibres
and cables" at Gwent College of Higher and cables" at Gwent College of
Education, Newport, on February 19.
K. Tabor of Post Office Telecommunications
will present "Post Office System X" at Bucks will present "Post Office System X" at Bucks
Higher Institute of Technology High
Wycombe. The IEETE meeting will be held Wycombe. The IEETE mee
on February 28 at 7.30 pm .

Car telephone service to go automatic

A service which will permit car radiophone
users in the London area to dial direct or receive calls from any of Britain's 25 million
telephones or 400 millon telephones or 400 million numbers available
on International Direct Dialling in 90 coun tries, is to be introduced by the Post Office in May 1980.
The new The new service will operate in exactly the
same way as the 'phone at home and will
enable enable 1 ,500 subscribers who have been
waiting for connection to take advantage of waiting for connection to take advantage of
this phone-in-a-car facility At the moment it is necessary to call the radiophone operator is necessary to call he raciophone operator,
ask for the number and when an unoccupied
radio channel is found the number is selected. radio channel is found the number is selected
and routed through to the caller. With the new servicice it will no longer be necessary to
follow special procedures such as depressing follow special procedures such as depressing
the "press to speak" button.
"New" radio frequencies. thew" radio frequencies, made available
by reducing the bandwidth of existing channels, have been created to accommodate the
increased number of subcribers using the increased number of subscribers using the
service. At present, the London Radiophone service. A present, the London Radiophone
service, which has been in operation since

Is breath-testing BORIS bogus?

According to a report by Radio Australia,
inventor Jim Blackwell has developed a "fool-proof" device which will keep intoxicated motorists off the road. He ealll sthe
equipment BORIS, which stands for Breath On Re-circulating IInition System and Jim
says the device is now ready for maret after four years of development. It is fitted to the car's ignition system and the engine will
not start "until the driver has blown into it If the driver's blood alcohol level is above the legal limit, the encine does not turn over.,
The inventor claims that tests The inventor claims that tests at Sydney
University prove that the gadget is 100% University prove that the gadget is 100%
effective. The practical implications of the effective. The practical implications of the
method, unless it is now possible to breath-
print a particular driver print a particular driver, are that in normal
use (and in the tests at Sydney University, use (and in the tests at Sydney University,
presumably) the sober spouse and kids have to be chained up to a local lamp post or left at home; the naughty driver might otherwise be
tempted to get one of them to blow into his tempted to get one of them to blow into his
BoRIS so that he she could roar off on a
characteristic characteristic zig-zag path in a haze of
alcohol and burning rubber. There's also a cohol and burning rubber. There's
distinct odour of red herring in the air!

Hounsfield wins major

German award

Dr Godfrey Hounsfield, who was joint win-
ner of the 1979 Nobel Prize for Physion ard Medicine, received the 1979 Aachen and Munich Prize for Technology and Applied
Natural Sciences at a ceremony in Munich Natural Sciences at a ceremony in Munich
recently. The prize, which is worth about
e15,000, is also in recognition of Dr HounsEsi,d's invention and development work
fiel
relating to compter relating to computer tomography. The an-
nual award was instituted in 1975 to mark the 150 th anniversary of the founding of Aachen and Munich Insurance Company.

1963, is stretched to its limit at about 3,500 manual system are being given the oppor tunity to switch to the automatic process, but those who choose to remain with the old
service will service will have to have their car equipment
modified to work on the reduced bandwidth
channels. channels. Conversion will be carried out free
of charge by the Post Office in conjunction with Radiophone suppliers under a carefully
phased programme phased programme.
Customers will
Customers will rent or buy the necessary
equipment from three authorised suppliers;
Marconi Com equipment from three authorised suppliers,
Marcconi Communication Services Ltt, Pye
Telecommunications.td Telecommunications Ltd, or Storno Ltd, who
will install and maintain the hardware Two charge rates are applicable to the automatic service; normal (working hours,
8 am to 6 pm) at $31 / \mathrm{p}$ for 8am to 6 pm) at $31 / 2$ for eight seconds and
cheap (evenings and weekends) at $31 / 2 \mathrm{p}$ for 15 seconds. The charge will depend on duration of call irrespective of distance and there will
be no three-minute be no three-minute minimum. The quarterly
rental will be $£ 100$, vat extra, and althoug rental will be $£ 100$, vat extra, and although
the first subscribers will be dealt with in May

Meteosat fails

Saturday, 24 November, 1979 marked the 2 nd
annivers 2 (plus a day of the successful anniversary (plus a day) of the successful
operation of Meteosat 1 and at 19.30 hours on hat day an apparent overload in a power
supply circuit caused the spacecraft to switch itself into the stand-by mode. A statement issue by the European Space
Agency (ESA) on 6 Decer Agency (ESA) on 6 December, 1979 points
the source of the trouble as being "a com ponent fault in a power control unit. The fault manifests itself as a spurious sisnal in
the circuit designed to produce protection the circuit designed to produce protection
against overload situations (such as short circuits). This prevents many of the satellite ub-systems from being switched on. This here is no way in which the problem can be avoided by choice of alternative circuits.
However, it appears that the failure is inter

1980, work on the new service as a whole wi
1980, work on the new service as a whole will
begin in January 1980 and take 18 months to complete.
Additional equipment is required at the
R of the necessary work will million wor Pye. These improvements will also permit users of the automatic system to make use

Datel 4800

A high-speed Datel service, to be known a
Datel 4800 , will enable users to send data a ip to 4,800 bits $/ \mathrm{s}$ over the national telephon network; the system is to be introduced by ypes of synchronous operation; full duplex half duplex and full duplex private circuit
with half duplex public network operation as with haid duplex public network operation as
standby facility. The system also incorporates customer test facilities enabling check on circuits or modems before calling in PO
engineers.
mittent in nature and it may well be that the satellite can restore itself to a normal mode The investigation is continuing and ground
simulations with similar circuits are being simulations with similar circuits are bein
used to try to identify possible actions and to gain an understanding of the likely longe term forecast for the affected missions." It is impossible to generate or disseminate
images or to distribute information via the S band transponders, although the data collec tion mission continues to function normally
M. L. Christieson, author of "Meteosat eart M. L. Christieson, author of "Meteosat earth
station", Wireless World June 1979, says, "The failure of this satellite is a great disap. pointment to the many people involved with
this project." Its failure may carry important this project." Its failure may carry important
implications for Meteosat 2 which is scheduled for launch in September 1980 aboard
the "Ariane" launch vehicle.

Store recorders aid disease research

Syringo Myelia, a disease which affects the central spinal canal and which causes pain, loss
of touch sensation and paralysis is being placed under renewed scrutiny at the Midland Centre for Neuro-surgery, Smethwick, using Racal's 14 channel "store" recorders. Information from transducer probes inserted into brain and spine cavities is compared with electrical signals from the heart. The seven speeds of the machine permit a "time la
approach which it is hoped will eventually yield a coherent picture of the disease.

$$
\begin{aligned}
& \text { electrical signals from the heart. The seven speeds of the machine pe } \\
& \text { approach which it is hoped will eventually yield a coherent picture o }
\end{aligned}
$$

$$
\left\lvert\, \begin{gathered}
\begin{array}{c}
\text { elect } \\
\text { appr }
\end{array}
\end{gathered}\right.
$$

CIRCUTTTIDEAS

Radio control encoder A simple seven-channel radio control encoder can be built with two i.cs as
shown The circuit operates from 5 to 15 shown. The circuit operates from 5 to 15
V at 2.5 to 8 mA and will provide an output current of up to 200 mA . The 555 is used in the astable mode with an off time of 0.25 ms and an on time between 1 and 2 ms except for channel 0 which The decade counter is clocked by the
falling edge of the output and is reset when Q8 goes high. Resistor R_{1} ensures that the 555 oscillates at a low frequency if no outputs are selected. If proportional control is not required, supply below 8 V a Zener regulator should be used to prevent variations in
pulse width.
S. Ingham

Moseley
Birmingham

Unity gain buffer with wide frequency

response

By d.c. coupling a n-p-n. common emit ter stage with a p-n-p emitter followe stage sharing a common load resistor, unity gain bufrer is formed which ofer response, low output impedance and low current consumption.
The 3 dB bandwidth is above 80 MHz and by selecting better transistors this
can be extended. Care in minimising the can be extended. Care in minimising the will also improve this figure. Current consumption is about a mA with a 10 V supply. The circuit will operate from 3 oo 30 V without degrading its per correct input biasing resistors because they reduce the input impedance. they reduce the
A. Lquizaba
Vancouver
Vancouver
Canada
Canada

Low-frequency

multivibrator

This multivibrator is based on th CA3290 dual voltage comparator which uses the bi.m.o.s. technique of com-
bining bipolar and m.o.s. devices on a chip. The use of m.o.s. transistors in the input stage of the CA3290 provides an input impedance of around 177Ω and common-mode rejection for inpu
signals below the negative supply rail signals below the negative supply rail. CA3290 is used as a conventional mul tivibrator. Because the input impedance is very high the value of the timing resistor can be large which enables a
small low leakage timing used for a long time delay. The second used for a long time delay. The second
half of the CA3290 is used as an output buffer so that the multivibrator frequency is not affected by output loading.
R. Buckley
RCA Solid State
Middlesex

F.m. channel scanner	gates out the 7413 oscillator. The dis play is enabled for three seconds and if during this time, the channel is wanted
This circuit scans through 10 channels	S_{1} is pushed. The display disappears for
of an f.m. radio or transceiver by	the remaining period of the monostable
switching crystals in the local oscillator.	pulse and is then enabled to confirm
switching transistor in the receiver	that the channel has been locked. If S_{1} is pushed again the channel is released
which is normally saturated when no	and the circuit continues scanning.
signal is present. On reception of a signal, point A rises to $\mathrm{V}_{\text {c }}$ and triggers	J. W. Jarvis
the 74121 which enables the display and	Cambridgeshire

Analogue trigonometric function generator

When a function generator is needed where the output is a trigonometric function of the input variable, this is usually accomplished with a digital memory or with a non-linear circuit imited range. This circuit is compaatively simple and simultaneously pro vides the sine and cosine functions over an angle of $\pm 2 \pi$. By using analogue can also be obtained.
The circuit operates by continuously sampling two harmonic waveforms, the phases of which are displaced by 90°. An oscillator generates sine and cosine waveforms at frequencies much higher
than $V_{.}$Purity of the waveforms has a direct influence on the quality of the outputs. The two waveforms are samp led and held by a dual analogue gate, C_{1} C_{2} and buffered by A_{l} and $\mathrm{A}_{\text {ld }}$ Samp waveforms and time displaced propor tionally to the input voltage by the p.l.1 The 4046 is locked to the sine waveform and $V_{\text {in }}$ is resistively summed with the hase-detector output which feeds the input frequency the p.1.1. cannot allow a change in the v.c.o. input and therefore generates a voltage at the phasedetector output which exactly opposes $V_{\text {in. }}$ Due phase-detector, the output square wave is displaced and its leading edge

Fuse tester

When it is necessary to test a mains fuse, unless the plug is taken apart, a conventional check relies on the resistance of the appliance. This circuit uses
the capacitance between the line and the capacitance between the line and
neutral wires in the mains lead so a faulty connection or open circuit within the appliance cannot cause a misleading reading.

The oscillator formed by gates a and b ; The oscillator formed by gates a and b induce a signal into the line. If the fuse is intact the induced signal is amplified by gate c, rectified and used to charge C_{2}. The voltage on C_{2} is amplified and used
to drive the l.e.d. The fuse tester can be checked by touching the contacts with a finger. Shrewsbury
used as a control for the two sample and hold circuits. To be symmetrical about $V_{\text {in }}=0$, the p.1.1. should have zero phase
shift at this shift at this point and this is achieved by adjusting the v.c.o. frequency. The innetwork so that V can vary symmetrically about ground by $\pm 4 \mathrm{~V}$ which
simulates an argument variation of \pm 2π. Transistor Tr_{1} squares the sinewave at the input of the p.1.1. to provide lock. Similarly, capacitor C is needed to Y. Netzer Israel

Test More

LP-3 Logic Probe Our LP. 3 has all the features of the LP-1 plus extra high speed. II captures pulses as narrow as 10 nanoseconds, and
monitors pulse trains to over 50 MHz . iving you the essential capabilities
of a high-quality memory scope of a high-quality memory scope
at $1 / 1000$ th the cost. LP-3 captures one shot or low-
rep-events all-but-impossible to -events all-but-impossible to
detect any other way. All without the weight, pulk, inconvenience and power consumption of conventional methods.

The New Pulser DP-1 The Digital Pulser: another
new idea from C.S. The new idea from C.S.C. The
DP-1 registers the polarity of
any pin pad or component any pin, pad or component
and then, when you touch and then, when you touch
the 'PULSE' button, delivers a single no-bounce pulse swing the logic state the
other way. Or if you hold the button down for more than a
second, the DP-1 shoots out second, the DP-1 shoots out
pulse after pulse at 1000 Hz pulse after pulse at 1000 Hz .
The single LED blinks for each single pulse, or glows during a pulse train. pulse, or glows during a pulse train.
If your circuit is a very fast one, you
can open the clock line and take it can open the clock line and take it
through its function step by step, at through its function step by step, at
single pulse rate or at 100 per
second. Clever! And at a very second. Clever! And at a very
reasonable price. $£ 51.00^{*}$
The logic probes shown are all suitable for TTL
OLL HTL And CMOS circuiss.
*price excluding P.8P. and 15% VAT

C.S.C. (UK) Limited,

Dept. 7J, Shire Hill Industrial Estate, Unit 1 Saffron Walden, Essex CB11 3AQ. Telephone: Saffron Walden (0799) 21682 Telex: 817477

American Express card no.
Telephone (0799) 21682 and g ive Us your Barc. 24 . hour, 5 day a week senvice.
number and your order will be in the post immediaitery, American Express WW - 013 FOR FURTHER DETALLS

The Ferrograph SP7

Atransportable recorder for fast, safe tape handling under all conditions and a
new concept that brings custom-building within the price range of models. It takes all spool sizes up to 27 cm and provides 3 speeds and positive action push buttons in association wath logic circuits s well as :
motion sensing and command memory Based on the Lofic motion sensing and command memory. Based on the Logic 7, individual
specification allows choice of mono full track or half track head, stereo half track or quarter track head, ine--in/line-out, microphone inputs and many
other features. other features.

The Neal 302

A studio cassette recorder that incorporates three a.c. motors for reliability
and smooth effortess power ti t controlled and smooth effortless power. II is controlled by a full solid state logic systen oversize capstan result in exceptionally low wow and flutter. Tapes are protected by constant monitoring and in the event of snag or snarl the machine returns to stop. The 302 is used by top recording studios and
broadcasting stations for quality cassette copies and inc-assette dulicicaio broadcasting stations for quality cassette copies and in-cassette duplica
masters.
Ww - Os4 FOR FURTHER DETAILS

Neal-Ferrograph, Simonside Works, South Shields, Tyne and Wear, NE34 9NX. Telephone: 0632566321

The Perrograplh Studio 8

A professional studio tape recorder logic controlled and offering a choice of stereo, twin track and full or half track mono heads, PPM or VU meters,
IEC (CCIR) or NAB equalisation. It is designed to meet the needs of modem radio and television broadcasting organisations and features include servo controlled run and spooling, tape motion sensing and three editing modes.
For up to $101 / 2$ spools . and has total type protection by electronic interiocks.

The Ferrograph RTS2 and ATU1
An all-in-one audio test set, the RTS2 puts an end to the use of separate instrumentation and its inherent complication of connections. The result is aster, cheaper servicing. It combines in one easy to use compact instrumen he measurement of gain, noise, frequency response, input sensitivity, such as wow and flutteri, crosstalk, drif and erasure. Linked with a Fertograp Auxiliary Test Unit, ATU1, its range of applications can be extended to include Auxiliary Test Unit, ATU1, its range of applica
measurement on professional equipment.

Spectrum analyser adaptor

Using an r.f. instrument for audio frequency measurements
by R. C. V. Macario, B.Sc., Ph.D., M.I.E.E. University College of Swansea

The unit described, based on two mixer integrated circuits, enables an r.f. spectrum analyser to display a.f. system responses without loss of performance accuracy. Examples of the application of the unit presente
here are measurements of the here are measurements of the
frequency responses of active a filters and radio receivers.

Many laboratories possess versatile r.f. spectrum analysers and often associated r.f. tracking oscillators. Unfortunately the lowest frequency of
operation of these instruments is often confined to a few kilohertz and this means that audio-frequency filter circuit responses usually cannot be examined directly on such instrumentation - and, indeed, if an audio
frequency network analyser is not to frequency network analyser is not to
hand the measurement of audio frequency response becomes very tedious.

Fig. 1. The complete adaptor unit, with a photographed trace in front
Fig. 2. Circuit diagram and waveforms of unit. To improve the carrier balance, add the circuit in the small box (top right) to pin 8 of each mixer.

The unit shown in Fig. 1 provides̀ a simple means of shifting an r.f. signal again to the same radio frequency Operation is centred about a frequency determined by a c.m.o.s. crystal oscillator. This has good stability and its frequency is easily changed. The centre
frequency can be between 1 and 5 MHz and is determined either by a crystal one has to hand or by the frequency required to match a receiver system being The fred
The frequency shift operation is caried out using the Siemens SO42P ouble balanced mixer device, which external components. The natural signal balance of this device is about 30 dB ; if better than 50 dB is req-
uired the balance circuit shown in a box as an option may be added. Two of these devices are used in the unit, as shown in the circuit diagram Fig. 2. The circuit diagram of the mixer device itself is clear the pin connection availability pins 11 and 13 are used as the signal nput (unbalanced arrangement in Fig.); Pins 7 and 8 are used as the shift carrier input (balanced); the output The principle of operation is quite imple. The swept r.f. input voltage is simply shifted down to audio frequencies (and d.c.) by choosing the approudio frequencies are then shifted up gain to r.f. by an exact counterpart circuit, the second SO42P. An aspect of he circuit is the symmetry of the two shifting r.f. reference waveform.
The c.m.o.s. oscillator (4011 quad 2 -input Nand gate) produces a nine volt quare-wave at the crystal frequency his is divided down to produce a ntuned wideband transformer T_{1}. The
maximum r.f. signal level that should be applied to the mixer inputs is 100 mV
peak-to-peak. This produces about. 400 mV peak-to-peak audio as an input to the test circuit. If the audio circuit under test produces gain then an attenuator must be inserted after the circuit can be examined; for lower frequency responses the values of C_{1} and C_{2} should be increased, provided the r.f. analyser has a narrower bandwidth.
The r.f. spectrum analyser is tuned to 2 MHz . The response of the audio filter appears both sides of the centre frequency, e.g. $\pm 10 \mathrm{kHz}$. Normally one would view one side only with an r.f.
sweep of, say, 1 kHz per division. The dynamic range of the unit exceeds 60 dB The normal sweep rates, etc., of the spectrum analysers apply.

Construction

The circuit has been committed to a p.c. board which fits in a RS Components
case type $509-383$. Normal wander plug connections are assigned to the audio lines, whilst BNC sockets on the back of unit are assigned to the r.f. input and output. Because the circuit only takes using a 9V PP6 cell. A double-sided board construction is assumed.

Applications

Active filters. The unit arose because of a need to examine certain active audio interest in limiting the there is a great interest in limiting the bandwidth of a.m. medium and long wave broadcast good audio filtering in a receiver can aid this desire. Also, in the construction of s.s.b./i.s.b. phase shift modulators/
demodulators the design of the audio demodulators the design of the audio
frequency low-pass filter is as important

Fig. 3. Circuit diagram of the Siemens symmetrical mixer i.c. type SO42P (14 pin dual-in-line)

Fig. 4. Examples of active low-pass filters; (below) pole-zero realisation using op-amps; (opposite) conventional LC diagrams show measured responses using the adaptor (vertical scales $10 \mathrm{~dB} /$ div; horizontal scales $1 \mathrm{kHz} / \mathrm{div}$.)

$$
\text { one L } 144 \mathrm{CJ}
$$

Resistors: $1-56 \mathrm{k} ; 2-12 \mathrm{k} ; 3,4-20 \mathrm{k} ; 5-10 \mathrm{k} ; 6-47 \mathrm{k}$ pot; $7,8-16 \mathrm{k} ; 9-8 \mathrm{k} 2 ; 10-100 \mathrm{k}$ pot. Capacitors: $1-10 \mathrm{n}$,
$2,3,5,6,7,9-1 \mathrm{n} 5 ; 4,8-3 \mathrm{n}$.

WIRELESS WORLD, FEBRUARY 1980

as that of the phase shift networks ${ }^{3}$. struction of audio filters is to use RC operation amplifier networks. An alternative, however, is to use a conventional LC filter synthesized design, replace the L by a gyrator and capacitis of interest to examine the number of components one needs in the two cases to realise the same filter performance. The filter performance considered for comparison is as follows:

$$
\begin{array}{ll}
\text { Cut-off frequency } & =4 \mathrm{kHz} \\
\text { Stop band frequency } & =5 \mathrm{kHz} \\
\text { Stop band attenuation } & \geqslant 40 \mathrm{~dB}
\end{array}
$$

Consulting filter tables (Zverev, ref. 4) indicates a promising design is an elliptic design with:
$\stackrel{5}{\infty}$

Fig. 4 summarises the two filter realiza-

tions. On the left-hand page the pole zero realisation is accomplished by using a triple op-amp arrangemen Huelsman ${ }^{5}$. On the right-hand page an LC tabulated design ${ }^{4}$ is realised using gyrators ${ }^{6}$.
The feature of particular interest in Fig. 4 is the list of the number of com op-amp design (one device only necessary e.g. Siliconix L144, Texas TL084), one requires 9 critical capacineeds two devices, but only 7 critical Photographs of the responses of tw means of R_{1} and R_{3} (inductances), so
\square

$$
\begin{aligned}
& \text { in } \\
& \text { m- } \\
& \text { he }
\end{aligned}
$$ other hand, in the gyrator design capacitors and 5 critical resistors. such filters, constructed on breadboards using 'stores' components are also

shown in Fig. 4. In the gyrator version it is possible to 'tune' the response by that it can be adjusted to be closer to the theoretical response

Continued on page 74

Resistors: $1,3-47 \mathrm{k}$ pot; $2,4-12 \mathrm{k}$. Capacitors: $1-16 \mathrm{n} 2 ; 2-2 \mathrm{n} 7 ; 3-18 \mathrm{n} 6 ; 4$
$-8 \mathrm{n}: 5-12 \mathrm{n} ; \mathrm{x}-1 \mathrm{n} 2 ; y-820 \mathrm{p}$. $4-8 n ; 5-12 n 8 ; x-1 n 2 ; y-820 p$.
ig. 5. Gyrator filter response as applied to ow the rf. or if. frequentre frequency 10 dB /div.; horizontal scale 5 kHz /div.).

$$
\text { |B/div.; horizontal scale } 5 \mathrm{kHz} / \text { /div.). }
$$

fig. 6. Arrangement of apparatus for measuring frequency response of a radio reiver.

Two transistor astables
by Peter Williams, Ph.D. Paisley, College of Technology

ASTABLE WAVEFORMS

The two-transistor astable shown is the standard text-book example. It was also justifiably th
standard industrial form of astable, though it needs a number of additions and modifications to Standard industrial form of astable, though it needs a number of addititons and moditications so
improve the rise-time, remove voltage-breakdown limitations, etc. These modifications remain important as applications of principles that can be applied to other generators and pulse circuits.
This form of astable also remains useful but has lost its dominance in the face This form of astable also remains useful but has lost its dominance in the face of
integrated-circuitalternatives. If transistor T_{2} increases its current the fall in collector voltage is coupled through the capacitor to the other base (Tr) driving that transistor off. The resulting
rise in the collector voltage of $T r$, is capacitively coupled back to the $T r_{2}$,reinforcing it os orig rise in the collector voltage of Tr_{1}, is capacitively coupled back to the $T \mathrm{~T}_{2}$ reinforcing its origina
increase in current. The switching is regenerative and any such change always proceeds to the increase in current. he switching is regenerative and any such change always procesds to ty
limit of one transistor on ($\left(\mathrm{T}_{2}\right)$ and the other off ($T \mathrm{r}_{1}$). When the potential at B falls rapidly it drives C to a correspondingly negative value, C having started close to zero (in practice 0.7 V
 and then, at 0.5 V , bringing Tr_{1} into conduction. The process is then repeated with Tr_{1},
saturated and Tr_{2} cut off. Independent control of the two parts of the cycle is inherent in the use saturated and Tr_{2} cut onf. Independent control
of different $C R$ sections for the two transistors.
Ideally the collector waveform should be a squarewave and the base waveform a section of a perfect exponential followed by a period at zero volts. The departures from this ideal are indicated and can be explained as follows. When a transistor is driven into conduction the
collector current can be very large depending on the current gain while the capacitor to which it is coupled sweeps the opposite base out of its conducting region. The transition is then slowed only by the device self-capacitances together with strays. Thus the fall-time at each collector is
very short. When a transistor very short. When a transistor ceases to conduct, the capacitor has to charge through the ful
supply range via R_{c} and the supply range via R_{c} and the opposite base-emitter diode. The rise time is thus of order $2.2 \mathrm{R}_{\mathrm{c}}$ by
the theory given earlier. As the timing cycle is of order $0.69 \mathrm{R}_{\mathrm{B}}$ if $\mathrm{V}_{\text {B8 }}=V_{\mathrm{cc}}$ then the rise time
 possible to reduce this greatly by manipulating the ratio R_{C} / R_{B} because that is constrained by
the need to ensure saturation of the transistors when switched on. $R_{\mathrm{B}} \approx 10 R_{\mathrm{c}}$ is a typical then need to ensure saturation of teaving the rise time at 30% of the pulse width.
constrand
The rapid capacitor charging also shows up as a spike at the start of the base-waveform
saturation region. The collector rise-time can up dre saturation region. The collector rise-time can be dramatically improved by isolating the collector
from the capacitor during the recovery period. Assume the base voltage of a transistor has been swept negative so that it ceases to conduct. The capacitor begins to recharge and the potential at A ises exponentialy due the cude. This isolates the collector from the capacitor and the
more rapidly reverse-biasing the diode. rise-time is limited only by strays and self-capacitance. There is one disadvantage of the circuit and that is that R_{c} is involved in the recovery period while $R_{c} / / R_{c}$, has to be driven by the
transistor. For a given maximum current gain this requires a reduction in R_{s} shortening the transistor. For a given maximum current gain this requires a reduction in R_{8} shortening the
pulse-duration or an increase in R_{C} increasing the rise-time. Thus an improved waveform at A^{\prime} is

At low supply voltages the fact that the base-emitter junction is subjected to a reverse voltage equal in magnitude to the supply is of no consequence. Above about 5 V this reverse bias may
be enough to produce breakdown in the iunction. This need be enough to produce breakdown in the junction. This need not be dangerous as the current is
limited by the peak current available from the other transistor but it clips the base waveform This makes the oscillation frequency more dependent on supply variations. The simple circuit is largely free of this problem as the resistor voltage ratio remains supply-independent as voltage the ratio ceases to be constant as the supply changes. Three possible solutions are shown (i) a diode in series with each emitter absorbs the reverse voltage at the expense of raising the collector saturation voltage: this can have serious consequences if the astable is to remain
compatible with, for example, logic circuits; (ii) a more diodes where D_{1} will generally be slower than D_{2}, its stored charge helping to turn the transistor of rapidly: with D_{2} omitted and D_{1} of low capacitance the circuit becomes suitable for higher
speeds, (iii) the collector voltage is caught by a diode speeds, (iii) the collector voltage is caught by a diode at some reference level too low for
breakdown to result during the foll breakdown to result during the following transition; the simple time-interval equation is again
modified because the voltages depend partly on a constant reference and partly on a variable supply.
This is a problem that is all too rarely discussed. At switch-on the vast majority of two transistor astables begin oscillating immediately. The start-up requires only a slight imbalance between the initial conduction build-up, which normally applies. Theoretically however the
circuit could immediately go into a stable, non-oscillatory condition. If the transistors go into that saturated state simultaneously, the loop gain is less than unity and oscillation never starts. The real difficulty arises if an otherwise satisfactorily oscillating astable has its output lemporarily short-circuited. Both rransistors would then be driven into their saturated state and
the very small rise in collector voltage from zero to V on the very small rise in collector voltage from zero to $V_{\text {CEEsay }}$ on removing the short-circuit is
insufficient to propagate around the loop and raise the loop-gaih to an oscillatory level. One simple way of avoiding this possibility is to ensure that the quiescent state of both devices is in
the linear region i.e. that if oscillation ceases for any reason the loop gain always returns to a the linear region i.e. that if oscillation ceases for any reason the loop gain always returns to a
value sufficient to e-establish it. Each base resistor is returned to its own collector meeting this value sufficient to re-establish it. Each base resistor is return
condition with only a small shift in the frequency equations.

Two transistor astables

THEORY

The voltage at B switches from V_{cc} to $\mathrm{V}_{\mathrm{CE} \text { Esan2 }}$. Prior to that instant C is at

This is composed of the major term $V_{c \mathrm{C}}+V_{\text {Bg }}$, obtained for ideal This is composed of the major term $V_{c \mathrm{c}}+V_{\text {Bb }}$, obtained for ideal
transistors, reduced by the finite transistor voltage drops in saturation.
 it linear region at some voltage $V_{\text {BEE(GI) }}$, where $V_{\text {BEgEat }}>V_{\text {BEIM }}>0$. Thus
the interval between one transition and the next is

This result is greatly simplified if

- When $T r_{1}$ ceases conduction potential at A has a finite rise-time due to the collector time constant. Again assuming $V_{B E}<V_{C c}$, and defining value then
$\mathrm{v}_{1}=0.9 \mathrm{v}_{\mathrm{cc}}$

$$
\begin{aligned}
V_{2} & =0.1 V_{c c} \\
\text { time } & =\tau^{\prime} \log _{8} 9
\end{aligned}
$$

$$
\begin{aligned}
& \quad=2.2 \tau^{\prime} \\
&- \text { rise time }=2.2 \tau^{\prime} \\
& \hline
\end{aligned}
$$

$$
\frac{\text { rise time }}{\text { pulse width }}=\frac{2.2 \tau^{\prime}}{0.69}
$$

$$
\approx \frac{3 \mathrm{R}_{\mathrm{c}}}{\mathrm{R}_{\mathrm{B}}}
$$

But $R_{B} \approx 10 R_{C}$ is typical to ensure saturation of the transistor i.e. rise time $\approx 30 \%$ pulse width

Voltage breakdown in the base-emitter junction modifies the
Voltage breakdown in the base-emitter jimple case is

$$
f=\frac{1}{T}=\frac{1}{2 \times 0.69 \tau}=\frac{1}{1.38 \tau}
$$

nd is independent of V_{c}
et V_{R} be the voltage on the base-emitter at which it conducts clamping the capacitor
$V_{1}^{\prime}=V_{c c}-V_{R}$
$V_{2}^{\prime}=V_{c c}$
$t_{2}^{\prime}-t_{1}^{\prime}=\tau\left(1-\frac{V_{R}}{V_{c c}}\right)$

$$
\mathrm{i}^{\prime}=\frac{2 \pi \log _{e}\left(1-\frac{\mathrm{V}_{\mathrm{g}}}{V_{c \mathrm{cc}}}\right)}{}
$$

$$
\begin{aligned}
& V_{C C}=V_{B B} \gg V_{B E[s a t)}, V_{C E(s a y) 2}, V_{\text {BE(t) }} \text {. } \\
& \text { Then } \mathrm{t}_{2}-\mathrm{t}_{1}=\tau \log _{\mathrm{e}}\left[\frac{2 \mathrm{~V}_{\mathrm{cc}}}{\mathrm{~V}_{\mathrm{cc}}}\right] \\
& =0.69_{\tau} \text { where } \tau=R_{\text {BC }}
\end{aligned}
$$

EXAMPLES

 the frequency of oscilltion from first

The waveform sketch is of a collector waveform falling from V_{s} to $\mathrm{V}_{\text {ceser }}$ Just prior to that instant the other base is at $\mathrm{V}_{\text {BEIsen }}$ and is driven
down by the same amount. When the base recovers to transistor takes over the second hall-cycle.

$$
\begin{aligned}
& V_{1}=V_{s}-\quad N_{\text {BEssan })}\left[V_{s}-V_{C E[s a s]}\right] \\
& =2 \mathrm{~V}_{\mathrm{s}}-\left[\mathrm{V}_{\mathrm{BE}(\mathrm{san})}+\mathrm{V}_{\mathrm{CE}(\mathrm{san})}\right] \\
& \begin{array}{l}
V_{2}=V_{s}-V_{\text {BE(HI) }} \\
V_{1}=10-0.85=9.15 \mathrm{~V}
\end{array} \\
& v_{2}=5-0.5=4.5 \mathrm{~V} \\
& T=2 \pi \log _{0}\left(\frac{9.15}{4.5}\right) \\
& =1.42 \tau \\
& \mathrm{f}=\frac{1}{1.42 \times 10^{4} \times 68 \times 10^{-9}}=1.04 \mathrm{kHz}
\end{aligned}
$$

Note the likely tolerance on this figure is likely to be dominated by the value as the $V_{\text {BE }}, V_{C E}$ values have mode only a marginal difference 2. For the previous question, show that the rise-time of the collector waveform is about 20% of the pulse width. Can this figure be When a transistor switches off the charging time-constant is $\mathrm{R}_{\mathrm{c}} \mathrm{C}$ and taken for sis the in fails to allow for the initia 10% and 90% levels. This is inaccura
V_{BE} value, but it gives a useful guide.

$$
\text { Thus rise-time }=\mathrm{CR}_{\mathrm{c}} \log _{\mathrm{e}}\left|\frac{0.9 \mathrm{~V}_{\mathrm{s}}}{0.1 \mathrm{~V}_{\mathrm{s}}}\right|
$$

$=2.2 \mathrm{CR}_{\mathrm{c}}$
But collector on-time is $\approx 0.71 \mathrm{CR}_{B}$
$\frac{\text { rise time }}{\text { pulse }}=\frac{2.2}{0.71 \text { dith }}=\frac{R_{C}}{R_{B}}$
$=\frac{2.2}{15 \times 0.71} \approx 20.6 \%$
say 20% allowing for the over-simplification. The fign R_{C} raising R_{B} or both (re-adjusting C as necessary to maintain τ). The limit is that the
The transistors must remain saturated i.e. $R_{\mathrm{B}} / \mathrm{R}_{\mathrm{C}}<\mathrm{h}_{\mathrm{EE} \text { Esal }}$ The guaranteed figure for saturated current gain is not likely to exceed
say 20 making large improvements difficult. Circuit modifications a say 20 making large improvements difficult. Circuit moditications
necessary for such improvements and an example is show opposite.

Townsman 2m/70cm aerial

Two-band design with no ground plane.

by B. J. P. Howlett, G3JAM

The continued witholding of the citizen's band by the Home Office has caused vastly increased occupancy of everyday purposes of mutual com munication between friends, and most of them use commercially-made private obile radio equipment tailored fo automatic/unattended repeater staions dotted about the UK.
Several years ago, the author foresaw the need for a somewhat tidier aerial for
the average householder than the tooprevalent, quarter-wave, ground-plane vertical aerial; an aerial which would be stick-like, with no ground-plane, and operating on both bands without and cheap, and easily clamped to a short stub-mast with Jubilee clips from the local garage. It wasn't an easy job! The first design, a half-wave rod transformer, did work, but the thinness of the centre wire to match 50 ohms to 1200 ohms (the end resistance of a 12 mm , half-wavelength rod at 145 space, relegate space.
grammatically in Fig. 1, the wire is 0.7 mm and the inductor can be 127 mm of p.v.c.-covered wire, fashioned into a to the feeder cable at the point of entry. Very careful tests disclosed the interesting fact that the transformer needed to be about 0.185 wavelength long when the insulator/spacer S was 0.015 could easily be made $1: 1$, and the feeder did not radiate. Pro rata scaling from the 2 m band to the 70 cm band proved that the hairpin needed to be, not one 73 mm long at three times the frequency. The inductance changed inversely as the frequency.
Already it was felt that enough was known about the aerial to go ahead with a full patent for the matching features, and this has now been obtained (British atent No 1527800)
Fuffered a practical viewpoint, the aerial be precision-made and sealed if water was to be kept out of the two joints, either side of the precision-turned insulator/separator. The solution

shown in Fig. 2, was to build the aerial flat, from off-cut strips about 1 cm wide, with a flat drilled strip insulator (of Perspex, in the authors case), the whole duit and put on a high stub mast so that it would rattle, and keep the author awake at night.
Quite right! That is exactly what the

Fig. 1. Basic aerial, a half-wave element A and coaxial impedance transformer T.
Loop inductor to augment impedance ratio obtainable.
kinks are for; to stop the assembly rattling in a high wind. The kinks hav no electrical purpose whatsoever. The two end-plugs, one drilled for the feeder, were actually cast from body-repair
(the automobile kind) resin, but could be turned from solid material, of course Gone is the taut centre wire in the transformer, T. Instead (see construction diagram), the centre core of the eeder itself, UR43, (F) with the braiding Actually, an insulated wire taped on to a wide strip is not unlike a coaxial line, except that there is the added advan age that, for fine matching adjustmen can be So wh.
Sound thabout 70 centimetres? Well, round the outside of the plastic conm radiating element the middle of the 2 m radiating element, a "cooking foil strip), cylinder is glued, resonant at the hird harmonic of 2 m . This prevent radiation from the centre current maxi mum when the aerial is used at its thir armonic on low, half wavelength which are in phase) operating as wo-element colinear at 70 cm .
The author is, perhaps, lucky to have discovered a matching and radiating system that can be adjusted to give very nce. It did take four years, of course and quite a bit of help along the way as given by other radio amateur

Fig. 2. Construction of $2 \mathrm{~m} / 70 \mathrm{~cm}$ aerial.
Dimensions are mm \& (nnches)

friends. None of them ever saw the final model, except from a considerable dis-
tance, but a number of the early models tance, but a number of the early models
were made by the author and farmed out for reports. G8NCW, G3PCA, G3IMC, G8LWA, G8BAM, G3YNC (callsigns given in a random order) were early users of the aerial, and some went on to build their own. Thanks are due to
all of them for the assistance they gave. Scaling the aerial to Band V television, proved a very pleasant surprise. With short, fat dipoles, and 75 ohm feeder, the inductor L is not needed. This helped the bandwidth problem
Red zone is particularly difficult in this respect, though it must be admitted that even 1 cm wide material does quite a good job, and the feeder is absolutely 'dead', allowing one to pin up the feeder after setting the aerial to the best posi-
tion, without upsetting the picture again. Some users have been known to get quite light-headed about this particular feature, only rarely encountered, apparently.
No dark plans are afoot to manufac ture the aerial. No doubt, however,
some character will make one or other of the suggested models and sell huge quantities in a clandestine manner Good luck.
To others, I would say, please build one with my compliments. It was a
challenge to make exactly the aerial I wanted; it was a challenge, in this day and age, to invent a virtually new aerial which turned out to be a new aerial, at
least within the definition of the patents law, whatever that is.
The table shows the dimensions of aerials for single-frequency use in other
bands. bands.

No more film for Channel

The smallest of the UK independent
television companies, Channel Island television companies, Channel Island Communications (Television) of Jersey
claim to be the first European bradclaim to be the first European broad film processing facilities have now been removed.
Sony Broadcast BVP300 cameras, BVU100 U-matic video recorders, editing and time-base correction equipment is used and has so far proved to be
highly reliable in almost all conditions. Channel's managing director, Ken Killip, expressed his enthusiasm for the new techniques, and feels that "the electronic cameras have given a new ting". It is no longer necessary for example, to have people in studio to interview them; the reduction in costs and elimination of film processing time means that outside interviews are now practicable. Camera sensitivity gives
freedom from the necessity to use kilowatts of lighting and the automatic colour balance in the electronic

cameras obviates the use of filters for different lighting conditions. Running
cost is "'negligible", since tape procost is "negligible", since tape pro-
duced by the U-matic is dubbed onto a master for broadcast, the original being refused.
There has been no union opposition to the use of the equipment, the techni lians being "most impressed" accordions manag Turner, Channel's operations manager.

WIRELESS WORLD FG日GUAY

Fig. 7. Radio receiver selectivity respons
measurement, a car radio with 100 V input at 1 MHz . (vertical scale $10 \mathrm{~dB} /$ div. relative to 1 W . horizontal scale $1 \mathrm{kHz} /$ div. relative to 1 MHz centre frequency)

Finally, Fig. 5 shows the equivalent response of these filters when used in an a.m. radio receiver. The response bandwith is now of course twice the audi

Radio receivers
Another application is the examination of overall receiver responses. Fig.
shows an arrangement for this meas urement using a standard signal generator, e.g. Marconi type TF 2002 The adaptor unit converts both the input r.f. signal to audio and the output tuned to the receiver centre frequency e.g. 1 MHz , and the output set to desired output level, e.g. $100 \mu \mathrm{~V}$. Some adjustment in the a.f. levels may be necessary in order to keep within the 100 mV pk-pk arrange at audio. It will now be appreciated that the spectrum analyser tracking generator sweeps the r.f. signal generator input frequency across the passband of the receiver under test. The tively monitored.
The response of a high quality car radio is shown for example in Fig. 7 This response is the aggregate of the r.f., spectrum analyser sweep rate must be sufficiently slow so as not to mislead the a.g.c. response of the receiver.

References

1. Reed, C. R. G. "Reduction of Interference by reduction of modulation bandwidth," BBC
Engineering J., Jan. 1972, f.23. 2. Eden, H. "A filter for the bandwidth limitation of a.f. programme signals in If $/ \mathrm{m}$ f
sound broadcasting," EBU Tech Review, sound broadcasting," EBU Tech. Review, 169,
June 1978, June 1978, p.118. . Macario. R. C. "Meeting mobile radio
2. specifications with operational amplifie
phasing networks," I.E.R.E. Conference on phasing networks," I.E.R.E. Conference on
Land Mobile Radio, London, 1975. 4. Zverev, A. I. "Handbook of thesis," Wiley 1967, p.222. 5. Huelsman, L. P. "AActive Filters, lumped
distributed, integrated digital and param distributed, integrated, digital and parame
tric," McGraw-Hill, 1970, Chpt. 2. 6. See Mullard TCA 580 data sheet

NOBODY CAN DO IT LIKE SABTRONICS CAN. NOBODY!

We pioneered the first benchtop professional quality Digital Multimeter at lowest price anywhere. We sold tens of thousands of units around the world and are still selling.
Nobody has been able to beat our price/performance ratio.

Now we are making the impossible again. A $31 / 2$ Digit LCD handheld professional quality multimeter at an absolute low price of only $f 59.95^{*}$. But don't get sold yet, wait till you have read further.

QUALITY, PERFORMANCE AND ACCURACY
The model 2035A offers you long term accuracy with a laser rimmed resistor network, a stable bandgap reference element, and single chip LSI circuitry. Expert circuit design and board layout have reduced component count to the
optimum minimum. With 32 ranges** and 6 functions, you optimum minimum. With 32 ranges* and 6 functions, you
can measure AC or DC volts from $100 \mu \mathrm{~V}$ to $1000 \mathrm{~V} ; \mathrm{AC}$ and DC urrent from $0.1 \mu \mathrm{~A}$ to $2 \mathrm{~A}_{;}$resistance from 0.1Ω to $20 \mathrm{M} \Omega$ Typical DCV accuracy of $0.1 \% \pm 1$ digit
OVERLOAD PROTECTION FOR GREATER SAFETY Input overload is protected to 1000 V (DC + AC peak). Ohm and current ranges are fuse protected. These features, plus a high immunity to voltage transients, protect the 2035A agains uncertain input conditions. linput and battery eliminator Wait don't order it untill you have read further

OTHER FEATURES FOR GREATER CONVENIENCE AND FLEXIBILITY
Automatic zero; Automatic polarity (+ implied, - shown); Large $1 / z^{\prime \prime}$ LCD readout with automatic decimal and low battery
indicator, uses inexpensive 9 V transistor battery; 200 hours battery life; push button switches for easy-operation; light weight (only 11 oz); fits easily into a jacket pocket; specially
designed injection moulded rugged plastic case in beautiful esigned injection moulded rugged plastic case in beautifu grey beach colour with matching switch buttons; only amateur, you should check out the Model 2035A for yourself.

Model 2035 as shown.
Model 2037A with temperature measuring circuitry $£ 69.95$

* Model 2037A has 34 ranges and 7 functions.

Making Performance Affordable
sabtronics

Send your orders with payment to:

TIMWOOD LTD
 14 Albert Street, Cowes Isle of Wight, England

Please sena me by parcel post

- Model 2035A
assembled and tested at $f 5995$:
Model 2037A
- assembled and tested at $£ 60$

Model THP 20

- Touch and Hold probe at $£ 9.95$ £

Plus VAT at 15% and p.p. $£ 3.50$ each $£$
Total enclosed herewith:
Name:
Address:
City:
:

From Science of Cambridge: the new MK 14. Simplest, most advanced, most flexible microcomputer-in kit form.

The MKI4 isa complete microcomputer with a krogrammed PROM, and a 256 -hyte RAM programmed PRo throunh the keybooard. As such the $M K 14$ an n handle dozens of
sser-written programsthrough the hexade Lser-wnitten programs through the hexadecima
keyboard
Yet in kit form, the MK 14 costs only $£ 39.95$ Yet in kit form, the $M K$
$\left(+\ldots 6.60 \mathrm{VAT}\right.$, and $\left.p \not \sum p\right)$.
More memory-and peripherals! More memory-and p
Oppional xxtras include:

1. ExtraRAM 256 bytes.
2. 1 -line RAMI/O device (allowed for on the 3. Low-cost cassette interface module-wh means you can use ordinary tape cassettes/
recorder for storage of data and programs 4. PROM programmer and blank PROMs to ser up yor own pre-p
applications.
VDU Interface, displays 512 characters on
625 line domestic $T V$ by memory contents of MK 144 Incorporates 64 character ASCll display chip, graphic facility,
UHF modulator All are available now to owners of MK 14. A valuable tool-and a training aid As computer, it handles operations of all types- from complex games to digital alarm
clock functioning, from basic maths to a puls delay chain. Programs are in the Manual, together with instructions for creating your own
genuinely valuable programs. And, of course, itssa superb education and training aid-
providing anideal providing an ideal introduction to computer
technology
A seto of Further Applications Programs is
available covering advanced
avalable eovering advanced programs, dealing
particularly with the use of the $1 / 0$ capacity of the

MK14 including the VDU and several progra writtent ina forn
called MINL. Called MINLL
SPECIFCATIONS
©Hexadecian leyboard 8 -digitit 7 -segment
LED display 085512 PROM, containing monitor program and interafac instumctions
256 bytes of $\mathrm{RAM} \bullet 4 \mathrm{MHz}$ crystal $\bullet 5 \mathrm{~V}$ regulator requires single $8 V$ Dower supply
-Space availabe for extra 256 -byte $R A M$ and - Space available for extra 256 -byte RAM and
16 port $1 /$ OOdge connector access to all data 10 port $1 / O$ Edge
lines and I / O ports
Free Manual
Every MK14 kitincludes a Manua whid
terfacing with fom com soldering techniques to Iterracing with complex external equipment. outines (square root, etco), digitita al alarm clock,
ingle-step, music nding games, self-replication mexind and mon

To: Science ofCambridge Lud 6 Kings Parade, Cambridge, Cambs., CB 21 1SN Pliease send me the forlowiowing plus details of other peripherals:
\square MK14 Standard Microcomputer \square MK14 Standard Microcomputer Kit " $£ 46.55$ Extra RAM (a £4.14 \square RAMI/Oder
 All prices include $p+p$ and vat. Allow 21 days sor del

Deshened for fast, easy assembly The MKla can be assembled by anyone with a time, using the illustrated step-by-step s provided. How to get your.MK 14
Getting your MK 14 kit is ea Gelting your MK 14 kit is easy. Just fill in the cheque or PO made payable to science of Cambridge. And, of course, it comes to you with comprehensive guarane.ien for any reason,
you're no completely satisfied with your MK 14, refurn it to us withinin 14 days fora fall cash
refund. refund
 \square PROM Programmer (II E1185 \square Further Applications Progra

Clock timer - 1

Random access memory stores 16 alarm times over seven days
By R. D. Clemow and T. C. Garden

The alarm timer was originally designed to operate with a time-code clock published in the February to
April 1976 issues of Wireless World but it can be adapted for use with other types of digital clock. The tandard circuit offers 16 alarm times expanded to 64 , Alarms this can be expanded to 64. Alarms can be
inhibited on selected days and back-up battery powers the volatile memory during a power cut.
There are many industrial and domestic situations where it is necessary to design provides up to 16 alarm times, athough it is possible to increase this to 64. The timer was primarily designed for se with a time-code clock, but it can b digital clock.
The design is based on a static 1 K r.a.m. which stores the alarm times.

Although this form of storage is only suitable for multiplexed systems, simplifies the circuit considerably The alarm times are stored as four
digits of b.c.d. so that they can be easily compared with the clock time to the nearest minute.
One advantage of using a time-code clock is its automatic setting after a
power cut. To make the timer compat ible, a rechargeable battery is used to power the memory and a few associated i.cs during such a power cut.

If it is necessary to inhibit alarms on
certain days of the certain days of the week this can be
achieved by using an optional circuit. A achieved by using an optional circuit. A
day-of-the-week indicator comprising seven l.e.ds is also included.
Fig. 1. Block diagram of the complet timer. The circuit is designed for use with connections refer to the time-code clock mentioned in the text.

The block diagram of the timer in Fig. 1.can be divided into four sections; the power supply, the day-of-the-week circuit, the memory input circuit and

Power supply

The power supply provides 5 V to run both the timer and a clock. It also controls the charging/discharging of the back-up battery and provides control signals to prevent spurious clocking of the memory and shift registers when the mains supply is cut or restored. The
5 V supply shown in Fig. 2 is based on a standard 3A regulator. Fig. 3. shows the battery charger and power control circuit which uses a constant current source around Tr_{r} to charge the battery 45 mA . Transistor Tr_{5} regulates the 10 V supply to provide 5 V for the memory circuits. If the mains input fails, the 10 V

supply decays rapidly and at $8 \mathrm{Vr}_{2}$ age regulator Tr_{3} to supply current from the battery to the V_{s} line. Diodes D_{1} and D_{6} prevent damage to Tr_{1} and mal operation Tr_{4} is turned off and the power fail line is high. When the mains supply is removed the power fail line goes low as soon as Tr_{2} has turned off and when the mains is restored, the clock display is blanked and Tr_{4} is
switched on via R_{8}. When the display blanking line goes low, Tr_{4} switches off and the power fail line goes high. Capacitor C_{1} prevents any switching noise reaching the power fail line which
s also used to disable the memory during power cuts so that pulses on the memory read/write pin have no effect. This prevents data in the memory from being erased because if the main 5 V supply fails, the memory is left in the ime-code clock mentioned previously, some alterations are necessary to en sure that the display is always blanked switch-on, see Fig. 4.
Athough it is impossible to alter the mains supply, the data will be lost if the battery is completely discharged after bout six hours of continuous use. To dicate that a power cut has occurred manually.

Day of the week circuit Pressing the day key clocks a divide via a debounce circuit. The output the counter is connected to the l.e.d. day ndicator and the shift register is clocked with the counter so that they remain in step. The shift register can be each day of the week and the l.e.d. alarm indicator monitors the output of the shift register corresponding to the day ndicated
As shown in Figs. 5 and 6, the key oard is inoperative with S_{2} at run because the common line is left floating With S_{2} in the set position, pressing any key grounds the corresponding output pin. Therefore, pressing the day key triggers a monostable in IC_{22} which
produces a 150 ms low pulse at pin 12 This pulse is gated through IC $_{12}$, IC and $\mathrm{IC}_{21 \mathrm{~b}}$ to produce a low pulse which clocks the counter IC_{8} whose output is decoded by IC ${ }_{9}$. Pressing the day key The counter is reset when pin 9 of the decoder goes low.
If the day indicator is to be automatic it must be clocked at midnight when the tens-of-hours B bit goes low. This
switches Schmitt trigger $\mathrm{Tr}_{7}, \mathrm{Tr}_{8}$ whose low edge is differentiated by $\mathrm{C}_{13}, \mathrm{R}_{33}$ and then fed to IC_{8} via $\mathrm{IC}_{17 \mathrm{a}}$. Diode D_{11} prevents a spike appearing at the input of $\mathrm{IC}_{17 \mathrm{a}}$ when Tr_{8} is turned off at 20,00 . hrs.
Any necessary correction to the time

Fig. 2. Main 5 V power supply

Fig. 3. Battery charger and power control circuit. Resistor R, is chosen for a trickle-charge

Fig. 4. Modifications to the time-code lock. The component numbers marked with an asterisk refer to the published apacitor and D_{23} has been added to discharge C_{17} during short breaks in the mains supply.
display is achieved by clocking the dis play at 100 kHz . This causes a short puise at $\mathrm{IC}_{17 \mathrm{~d}}$ output which is filtered by R_{33} and C_{12} to prevent false clocking. I the power fail line goes low, IC_{8} canno blocked. When the mains is restored the power fail line remains low while the 5 V supply is recovering and only goes high when the display blanking lin goes low. The day indicator is not is interrupted when the midnight pulse is to be produced. If this occurs the day ndicator will be one day behind when the supply is restored, but e.d. provides a warning
shown in Fig. 7. The output of IC clocks IC_{10} so that it is always in step with IC_{8}. The Q outputs of IC_{11} ar normally high and gates $\mathrm{IC}_{18 \mathrm{c}}, \mathrm{IC}_{18 \mathrm{c}}$ input. The alarm enable l.e.d. monitors the output of $\mathrm{IC}_{18 \mathrm{~d}}$ and indicate whether the alarm is enabled or in

Fig. 5. Keyboard encoder and memory input circuit.
hibited. With S_{2} at set and S_{3} at day, the Z line is grounded and the alarm is ing 0 on the the day indicated by pres. via I_{1} so that its Q outputks C_{1} which forces the data inputs of IC_{10} high and switches the alarm enable l.e.d. off If the day key is then pressed, the new data is clocked in and the low pulse a
IC ${ }_{\text {id }}{ }^{1} 2$ output
To enable the alarm for the day indi cated the 1 key is pressed which clock IC_{112} via $\mathrm{IC}_{15 c}$ and clears IC_{115} via $\mathrm{IC}_{17 c}$ the alarm enable led is switched on and, if the day key is then pressed, data is clocked into IC_{10}. This also resets $\mathrm{C}_{11 \mathrm{a}}$. When entering data, an error can

Table 1. Power supply connections for Table
the i.cs.

4Vs	Type OV	5 V	Vs	Type
1	8	16		74147
2	8		22	TMS4039
3	7	14		74266
4	8	16		74157
5	1	8		NE555
6	7	14		7474
7	10	5		7493
8	10		5	74LS93
9	8	16		74145
10	7		14	74 LS164
11	11	4		7473
12	7	14		7411
13	7	14		7427
14	7	14		7410
15	7	14		74266
16	7	14		7432
17	7	. 14		7408
18	7	14		7400
19	7	14		7404
20	7	14		7404
21	7		14	741502
22	8	16		74123
23	8	16		74123

WIRELESS WORLD. february 1980

LETTER

In recent issues of your journal I noticed a
number of articles and letters concerned with number of articles and letters concerned with introduction of a citizens' band service in
Great Britain. As I have many years of Great Britain. As I have many years of
experience as a ser of c.b. I would like to add my thoughts on this subject. Five years ago I installed the first c.b. set in
my car; recently I replaced it with a 40 my car; recently I replaced it with a $40-$
channel set. The price of the first set was $\$ \$ 150$; the price of the new set only $\$ 55$. Both Japanese made sets perform admirably. I use
c.b. mostly while travelling Calling or tunig c.b. mostly while travelling. Calling or tuning
in to Channel 19 (by custom this is the highway channel in most of the US) gives me mstant information on road conditions man miles anead, accidents, traffic congestions,
where to find an open gasoline station etc.
When travelling in When travelling in an unknown area I can find out about a good restaurant, how to find landmark and, of course, location of speed
traps and other hazards of civilisation. In general I find c.b. to be an invaluable com-
panion which keeps me alert and awake on panion which keeps me alert and awake on
long trips. Being able to contact in most areas a member of the REACT group or a local police department on the emergency Chan-
nel 9 gives me an additional peace of m ind nere and in your country the majo
Heres me and aditional peace of mind. opposition to c.b. seems to originate in the ham radio community having no experience mostly from misunderstanding of the actual and beneficial use of c.b. and from non-
willingness to share the r.f. spectrum with willingness to share the r.f
Some of the letters in your magazine also reflect a certain fear of offending authority local constable?). I assure you that the attitude of most US police departments is Channel 9 is continuously monitored by the local police to find out about emergencies
After 10 years of motorists warning other of speed radar they still catch enough speeders.
Cass R. ewart
astm
ew Jersey, USA

BOOKS

Beneath the City Streets, by Peter Laurie, an updated version of an earlier book of the
same title, contains a good deal of information about government communication sysems in the ak sertainly with nuclear weapons, and internal revolution". Most of the book however, is concerned with the
citadels, bunkers and other dispersed centres of government that exist in Britain to deal with such emergencies. In a chapter on civil defence there is a 9 -page section on over-
the-horizon radar. Will feed the prejudices of those who hate the apparatus of the state. A Panther paperback from Granada Publising, it costs $£ 1.95$. Teletext and Viewdata, by Steve A. Money, is
an attempt to explain the still cloudy subject
of television data display systems in a simple of television data display systems, in a simple
way to non-specialists. The book is detailed, but not specific - the author covers the but not specation of a decoder without con-
whole oper centrating heavily on circuit technique or
confining himself to specific component types: rather, a broad understanding is offered. Several commercial decoders are described and a alossary of data display terms is
included as an appendix. The book has 151 included as an appenid. The back by Butter-
pages, is published in hard ber worth and Co., 88 Kingsway, London, WC2B 6 AB , and costs $£ 5.50$.

Handbook of Electronic Formulas, Symbols
and Definitions, by John R. Brand, concenand Definitions, by John R. Brand, concentrates a vast amount of information into a
small enough book to be conveniently to hand when it is needed. The design of the
book is unusual and completely logical; the book is unusual and completely logical; the of the page, being followed by its definition (and it is surprising to see how many meanings some symbols possess) and for-
mula involving it in the convenient transposition. Formulae have been expressed in suitable form for attack by electronic calcultor. Three main sections of the 359 page book
are: passive circuits, transistors and areerational amplifiers; two useful appendices give a list of ratios obtainable from 5% passive component values, and a list of terms
with their symbols - the reverse of the main with er symand -
body the handbook. The publishers are Van Nostrand Rheinhold Company Ltd, Molly Millars Lane, Wokingham, Berkshire, although the book is A.
is $£ 11.95$ in hard back.

Sound Recording for Motion Pictures by Charles B. Frater, is a broad introduction to

 current techniques, is and equad introduction to to has helpful illustrations on most of its pages.Assuming no technical knowledge, it starts with elementary chapters on the nature of sound and electuct
techniques such as synchronous sound recording, transfer from tape to film, editing and dubbing. Dolby noise reduction and digital sound recorang are just mentioned.
Too general for those already working in the field, it seems intended for beginners going into the motion picture industry. With 210 pages, in paperback, the book is pub
the Tantivy Press, London, at E 2.95 .

Newnes Book of Audio is another compila-
tion of articles written by the half-dozen or so
people whose names seem to crop up mos
frequently in the audio magazines. It frequently in the audio magazines. It is
intended for those who would like to buy high-quality equipment, but who are be-
mused by the technicalities inherent subect in which electronics plays a leading part, and in which advertisers tend to use pseudo-scientific expressions to give an aur
of professionalism The first chapte
The first chapter is a general look at the n individual components by nine sections em, their use and testing. A very useful daition is a directory of makers and distributors. Butterworth and Co (Publishers)
Ltd publish the book at $£ 4.95$ in paperback.

Microelectronics into the 80 s is a view of the economic, commercial, technological and pointical factors which will govern the deve
lopment of the industry in the next decade. is published by Mackintosh International, a market consulting group who specialize in semiconductor industry (its current state government involvement, forward planning nancee is presented for France, Italy, Japan articles by Mackintosh, Petritz and Barro give personal views on the future o integrated-circuit technology and applica €30. Mackintosh Publications Ltd, Mack intosh House, Napier Road, Luton.
Electronic Logic Circuits, by J. R. Gibson, is first-level text, intended for students who have no previous knowledge. It is based on
courses for first and second year students at courses for first and
Liverpool University
The first two chapters are introductory dealing with number systems, coding and components, and leading to an explanation
of logic elements, Boolean algebra and circuit nalysis. Chapters are then devoted to heoretical and practical logic design, bo ombinational and sequential, with a fin Books on logic desi similar to one another, being of about th same length and possessing the same or that the author has not felt compelled to introduce logic functions via the usual Venn imagery, its explanation gaining clarity with
the omission. Symbols used are those in common use in, for example, Wireless World. The book is published by Edward Arnold, 4 sedford Square, London, WC1B 3DQ
Power Sources 7, edited by J. Thompson, the latest in a series of books recording the proceedings of the International Power
Sources Symposia held every two years. This ne contains the 49 papers from the 11th symposium held in Brighton, 1978. Most o he contributions are accounts of advanced ectrochemical research work in primary, batteries, including fuel cells, but the paper also contain reports on applications in ehicle propulsion, portable electronics, other fields. Discussions on papers are inchuded. Although its price is high at $£ 65.00$,
this 774 -page well-printed hardback book
will be good value to specialists in the field.
Publishers are Academic Press, London. Guide to Technical Short Courses published by the Institution of Electrical Engineers, and is abstracted from their computer database Coursefinder. Courses listed
are those on electrical or electronic ensineering and are of the variety lasting less han one year. Full-time or part-time studies re covered, including intensive courses of nder the college, university or company nnning them. Details provided include the vel of study, type and duration of the remarks. There are subject and geographical indexes. The guide is published at $£ 25$ by the EE Marketing Department, Station Hous tchin. Herts SG5 1RJ.

Volume 12 of the IBA Technical Review is titled Techniques for Digital Television. As is usual in this series, the 70 page book consists of a number of contributions by IBA
engineers on a central topic - in this inengineers on a central topic - in this in-
stance, digital video processing. The discovery some years ago of the possibility of sub-Nyquist sampling rates (less than twice ponent) led to the design of a digital television studio using the proposals, and these articles describe the components of the system. In common with the other volume
in the series, this book is extremely well presented. Libraries or engineers and tudents directly involved in broadcastin can obtain a free copy by writing to IBA
Engineering Information Service, Crowley Engineering Information Service, C
Court, Winchester, Hants, SO21 QQA.

Electronic Projects Index for 1978 is now available. This is the second edition, the first covering the period 1972-77, and contains entries from a further eight publications. The compiler has taken constructional articles them by subject, with references and a short descriptive note on each, including an es ponents needed for many of the projects. Classification of the articles into types o equipment described is well done, and the published at $£ 1.30$, by post, by Central Library, Northumberland Square, North
Shields, Tyne and Wear NE30 1OU.

Z80 Instant Programs - machine-code routines for Nascom and other 280 Computer systems - is by J. Hopton. The programs are listed in memory
location/Op-code/Meaning columns and are intended for a small $\mathbf{Z 8 0}$ system cabable of up to 1000 program steps. New owners of computers may find the book useful, since it
begins with very simple examples, such as the production of the delays and single tones, and finishes by programming for a
game. Hex notation is used throughout The book is published in paperback by Sigma Technical Press, 23 Dippons Mill Close, Tettenhall, Wolverhampton WV6 8HH, at the

Electronic focusing

Simulation of the human eye mechanism

Conventional focusing systems depend on the knowledge of distance making any distance measurements. This article outlines an electronic system which simulates the eye's ability to use colour and luminosity
differentiation for focusing an

MOST READERS will be familiar with the manual focusing ring and distance scale on common cameras, but Konica have produced an automatic focusing camera that performs a triangulation or indirectly calculating distance. An uses a beam of ultrasonic waves to measure distance. However, the human eye does not use any of the above methods. The purpose of focusing is to btain the maximum amount of infor knowledge of distance is only a conse quence which comes from our visua experience. The photographs in Fig. 1 illustrate what is meant by maximum information. The human eye operates more like a computer than a camera and
focusing seems to be achieved by scan ning the area and comparing the uminosity and colour of adjacen oints. When the difference reaches aximum the inge is in focus. Th version of the eye, where a phototran sistor moves back and forth between wo positions which are close together reading of the light level is taken a ach position and then compared, intelayed as a peak reading from an in trument. The use of two phototransisors has been excluded because high nearity is required. A logarithmic reat variation in input signal due to the arge range of luminosity. In the prototype the phototransistor was glued to he centre of a $1 \frac{1}{2}$ in speaker with most of its diaphragm removed to reduce used to drive a 1 W amplifier for the speaker and to provide gating pulses for he analogue switches. To avoid a beat requency caused by the 100 Hz of artificial light, a sync pulse was derived from the mains. The speaker and probe which was placed in the image area.

Fig. 2. Focusing system which measures light levels between two adjacent areas. The difference signal is amplified and displayed as a peak

2

Fig. 3. Output of the phototransistor (top) and gating pulses to one of the
analogue gates when the picture is (a) out of focus and (b) in focus.

Fig. 4. Double differentiator used to light. The majority the variation of click is heard only when all of the channels produce a pulse at the same time.

Fig. 5. Output of one channel (upper
trace). The oscillation is the residual
100 Hz artificial light frequency Output 100 Hz artificial light frequency. Output from the majority gate (lower trace).

Fig. 6. Differentiation focusing system for television scanning. A focussing
signal is obtained by detecting the signal is obtained by detecting the high
frequency content of a video signal

In use the gating time is adjusted so that the instrument reads zero with the focused which should produce a peak reading. A photographic enlarger or a slide projector can be used for ex perimentation. To simulate the human eye accurately, several detectors should
be used to cover the picture area. However, fairly accurate results can still be achieved with only one detector. Displacement of the phototransistor is dependent upon the required accuracy. A of exact focus but reduces sensitivity. In the prototype a 0.2 mm displacement was used with a $300 \times 300 \mathrm{~mm}$ picture. With very low light levels the human eye has difficulty in differentiating be-
cause the colour is absent and the depth of field is narrow. It seems that under these conditions focusing is achieved by time differentiation. The light value from a certain point is compared with the value seen a moment before until
the variation of light reaches its maximum. Also, a large number of points are analyzed and.when they seem to correlate we assume the picture is in focus. The diagram in Fig. 4. shows a method outputs of the detectors are fed to a majority gate which gives a pulse at the output only when there are pulses simultaneously at the three inputs. produced but they are always together and near the focusing coint During focusing a click is heard from the speaker and this corresponds to the point of best focus.
Television scanni
Television scanning is an ideal appliand a simplified system is shown in Fig 6. When the picture is in focus the video signal has the highest percentage of high frequency signals. The reading on the instrument is very accurate and perfect focus.
In these examples there has been no attempt to implement a servomechanism for automatic focusing. The main purpose was to study the mechanism of
focusing used by the human eye and to investigate an electronic simulation. \square

The Author
Although born in England. D. Di Mario was educated in Italy and received a diploma in telecommunications. His car-
eer started in research and development $a t$ Aur started in research and development at puters at NCR. After a period at Siemens where the author worked on electronic PABX an
Italtel as taltel as a foreign contractor where he is curren.
tion.

Pocket information

Do you know.

- wavelengths for BBC external services? - what a gray per second is?
- how to build a simple graphic equalizer? - whether
ralia?
- the function of a c. .0.s. 4040 ?
- what the Radio 3900 Hz test tone is for? - how accurate the GBR, MSF transmishow accur
- the exact value of the semito rior - how much speech power you need for a
- a simple circit for a 1.4 V rer
supply? circuit for a 1.4 V regulated
- how to wind a crossover choke for 5 mH ? - a near equivalent of the $\mathrm{BC1} 19$? the maximum voltage of a completely red how to find the impedance of a loudspeaker? he Fourier series for a triangular wave? how to work out logs and trig. functions without tables?
The answers to these and countless othe questions are contained in the 1980 edition of
the Wireles Werld the ireless World Diary. The list of ganisations is expanded yet again, the th
standal standards section brought up to date aty
several new sections added. Unfortunately you can't buy it directly from the publishers,
T. J. \& J. Smith Ltd, of Deer Park Road London SW19, and you will need to ask
L. J. retailer to order it through the book trade.
Wireless World has a Wireless World has a limited number of
copies for overseas readers price inclusive obtainable from the editorial office.

Spy fever

Some of that breakaway group over the Atlantic are obviously not especially averse to a fast buck.
In the land of the free, if we are to believe the evidence of television and
film, one can no longer ring the butcher film, one can no longer ring the butcher
to order a couple of t-bone steaks without someone illicitly earwigging in on the conversation and recording it on tape for, presumably, nefarious purposes. Concealed radio microphones, miniature cameras and telephone taps sequence, so are the countermeasures for these little horrors. One American
company, CCS, claims a yearly turnover company, CCS, claims a yearly turnover of 25 million dollars in this field of activity.
Assuming that attack is the best form
of defence, or analogy of setting a thief to catch a thief, CCS has managed to square its conscience by providing not only the
defence, but the attack as well. Dismissing any inconvenient abstract notion of ethics as "arcane moral philosophy", Gerald Freeman, a New York public relations man, implied that if you want to get on in business, your first move
must be to get yourself a bit of "candid surveillance" equipment. For example, it seems that no well-equipped businessman is now roadworthy without his security system for eavesdrop-
ping, his briefcase with a secret "con ping, his briefcase with a secret "con-
versations recorder", and a covert spy a camera that shoots round corners. CCS will, I think, have to recognize the new opportunities presented to
them on entering the UK market. Have them on entering the UK market. Have they properly understood the real func-
tion of the standard-issue umbrella for instance? It is nothing to do with the weather: that long stem is of exactly the right proportions to conceal a directional microphone, its amplifier being concealed in a hip-flask. All those
fountain pens - they aren't just for signing for expense-account lunches most of them contain powerful telescopes for finding out what that rotter who's pinched one's seat on the Mr Freeman, we're way ahead of you.

Fish and chips

I've been waiting to use that heading for a couple of years now, and I finally
located the excuse in a report in a daily located the excuse in a report in a daily paper, on the subject of what the future, holds in store for us. Ever since the
'microchip' became the least'microchip' became the least-
understood and and most-quoted household word since Einstein published his thoughts on relativity, any poor hack who can't think of a
thing to write about for his daily 500 words lies back with his feet on the desk for twenty minutes and dreams up a few uses for microprocessors. He then
writes his piece entitled "Our Future writes his piece entitled "Our Future Since it is well known that the chip in question can do anything or that, if it can't now, it soon will, a lot of the brainstormed suggestions are feasible. I
saw one last week, though, that gave saw one last week, though, that gave
every indication of having been brought forth by someone whose idea of a brisk walk is a belt down the M1 in an MGB; the end being confused with the means. The notion put forward was a fishing
rod with an attached microprocessor, the idea being to set everything up automatically to catch any fish in any stretch of water at any time.
I've never been one for gratuitously
attacking fish of any kind, except when they lie, surrounded by chips, in a piece of Daily Express, but I do have the distinct impression that whoever's diseased mind thought that one up had got hold of the wrong end of the stick. The
whole idea, I've always thought, was to sit reflectively on the bank, pondering on the nature of the Universe: if a fish happens along and is unwise enough to investigate, then so be it, but it's the
sitting that counts. If it is to be turned into a kind of production line, then the poor old fish are in for a pretty hectic time. Simply isn't cricket, at all.

Scots wha hae

I have fulminated in the past over electronics being used for trivial purposes, is gratifying, therefore, to see a genuin requirement which is capable of being fulfilled, simply and at little cost, with aim of giving a group of citizens a bit of peace and quiet.
One of my colleagues recently tish village, whose sleepy charm is currently being shattered fairly regularly by a Klaxon horn. It appears that the garage owner's telephone operates the
horn so he can hear it over the noise of engines and British Leyland cars disinegrating. That would be all right in the normal way, but the village is a quiet one, and every time someone rings the garage to ask if their car is done yet, a concerted leap into the air of about six inches.
One's heart goes out to these unfortunate denizens of the northern mists.
There they all are, replete with haggis There they all are, replete with haggis after a hard day tossing the caber and logging about the grouse moor 'til fit to drop, when all Hell breaks loose at the

Mlixer

garage and the timeless tranquillity of this little corner of Scotland is shot to pieces.
What
What they want, it seems, is a small transmitter, driven by the telephon
which will trigger a pocket bleeper. They must be a more easy-goring up there than I had previously supposed. My image of the Scotsman of yore is of a great, red-haired, red-
bearded, kilt-swinging, wild-eyed giant careering about with his claymore and doing severe damage to whoever he took exception to. It would be a foolhardy garage-owner who would upset a village full of characters like that. I can only suppose that soft living has sapped heir natural boisterousness.

Ship chips

They tell me that sailing ships are com ing back. It's all to do with the oil, you see - or rather the lack of it. I've seen
several proposals, from sail assistance on propeller-driven ships to complete, full-blown(!) latter-day clippers, cleaving through the waves with acres of canvas billowing from the masts, miles of ropes, or sheets or whatever
they call them, and all the romance of the old East India Company days. All those lovely old words will come back into everyday use - scuppers, marlin-
spikes, t'gallants and microprocessors. spikes, t'gallants and microprocessors. Oh, yes; it is not, it seems, the intention
to use more than a modicum of musclepower to raise and lower the aforementioned canvas (nylon, more like) but to do it with motors under the control of silicone chips (they're the waterproo Well, might conceivably feel a little selfconscious bawling out "Heave-ho, my hearties" to a couple of boards full of i.cs; there is also the matter of what
sanctions to impose on a mutinous dos of a u.a.r.t. that won't. Anyone with a little imagination
could work this up into the ideal trans could work this up into the ideal trans-
port scheme. What you need is a sailing port scheme. What you need is a sailing
ship, with its computer, to start with. ship, with its computer, to start with.
Satellite and shore-based navaids, coupled into the computer together with heading information and met forecasts, and maybe a maintenance man with another to stop him going potty, and you've got a virtually hands-
off system. Pop all the cargo into the off system. Pop all the cargo into the
hold, point her in approximately the right direction, give her a shove and forget about her for a few weeks. Even tually a message will be received:
"Yours of the 15th ult. turned up yesterday" As I said, all you need is a little
imagination.

The superb 3.77 is the only choice in compact professional recorders.

Who says?

Hundreds of satisfied professional users - Broadcast authorities, studios, record companies,

What makes it the best?

The 3.77 provides more performance and features for your $£$ than any other model. Like 3 speeds, flat metal facia with excellent editing facilities, 100% variable speed control, logic control with motion sensing, line-up oscillator.

Simply ahead ILP'S NEW GENERATION OF HIGH

PRODUCTS OF THE WORLD'S FOREMOST SPECIALISTS IN ELECTRONIC MODULAR DESIGN

and staying there PERFORMANCE MODULAR UNITS

NOWAITING FOR THESE TOP PRODUCTS

The PM 2517 has set the
standard and the pace in Europe
for hand-held digital multimeters for hand-held digital multimeters and still it remains in a class of its Remember, its many important features include full four digits, so on mains voltage readings, for example, you might get 240.3
instead of the 240 , which a $31 / 2$ digit meter would read. digit meter would read.
me other PM 2517 plus points: LED or LCD display OTrue RMS readings of AC
Reader OOptional accessories include temperature and data hold probes Reader inquiry number 220
The PM 3207 - Super Scope-is a tough, general purpose
oscilloscope which offers at a low price oscilloscole which offers at a low price
the quality and technology you expect from Philips Test and Measuring
instrumints.

- 15 MHz dual trace
- Auto triggering from either channel with adjustable level between peaks and TV ${ }^{5} \mathrm{mVV}$ sensitivity, Y and X (via A input)
Reader invacility
Reader inquiry number 221

PATTERN FOR THE FUTURE

92
 Whoever sees it, you won't blush.

With JVC's help, no non-broadcast video producer need feel embarrassed when a producer from the broadcast
side of the fence looks at one of his side of the fence looks at one of his tapes. That's because JVC have developed, at an affordable cost, a portable camera which brings truly
professional quality to CCTV. professional quality to CCTV.
It's the three-tube CY-8800E Nothing at anywhere near the price Nothing at anywhere near the price
handles colour so faithfully, with so handles colour so faithfully, with so small a registration error, with such excellent signal-to
even in poor light.
But you don't have to believe an advertisement. Ask one of the Bell \& Howell Video Centres (addresses opposite) to make an laddresses opposite) to make an
appointment to bring the camera to where you work. This will prove that where you work. This will prove that
among its other merits the CY- 8800 E travels well and is easy to carry around. Then try it on your shoulder and a tripod. This way you'll discover that it's going to serve you just as well in the studio as in the field.

Finally, when you've admired the pictures on the colour monitor, admire the features - features to optimise performance under all conditions. Fully automatic features that help make the CY-8800E so remarkably easy to use (which means you can concentrate on images, not have to apply half your mind to controls). With the camera and monitor, the Video Centre demonstrator will be
bringing (probably wearing) the JVC CR-4400LE. This is the portable, but equally professional, recorder/player perfect complement to the Cy-8800 perfect complement to the CY-8800E
(indeed, it was designed to be just that) (indeed, it was designed to be just that) playback, direct into a monitor, on site.

It has an automatic assemble editing function and drop-out compensation. Best of all, its designers have made portability It records and plays as as non-portable U-format quipment (with which of course its tapes fully compatible).
Are all these claims valid? It will cost nothing except a phone call to a Video Centre to discover for yourself that the CY-8800 E and CR-4400IE are as good as we think. them to be.
If you'd prefer to read the leaflets If you'd prefer to read the leaflets your name or headed notepaper to your name or headed notepaper to Dept CY/8, Bell \& Howell A-V Ltd. (nostamp needed). We're the exclusive distributor of JVC video equipment to industrial, institutional and commercial markets in the UK and Eire. And, of course, we offer the exclusive Bell \& Howell Supershield warranty which guarantees free repairs and replacements (except for tapes and camera tubes) for two years from date of purchase. Plus free transportation to and from video workshop. \dagger Plus free advice.
First-class equipment from JVC. First-class support from Bell \& Howell Video Centres. And Supershield, a first-class guarantee.
(1) BelleHowell

SAVING!
DINDY OW NOISE CASSETTES

ALL REDUCED!

TRANSISTORS

DIODES

	${ }_{\text {ce: }}^{\text {cis. }}$

COMPONENT PAKS

ELECTRO-TECH COMPONENTS LTD. 364 EDGWARE ROAD, LONDON, W.2. TEL: 01-723 5667

JVC-VICTOR HIGH FIDELITY STEREO CASSETTE

TRANSPORT MECHANISM
ELECTRO-TECH COMPONENTS have secured a very large quantity of cassette transport mechanisms, equipped with all the latest improvements, as well as

fEATURES:
$\stackrel{\text { Closetolorance, } \text {, } \text { high-quality, top loading transport }}{\star}$

Price of above unit $£ \mathbf{1 4 . 9 5}$ VAT Inc.
Plus E1 P\&P

APOLOGY WE REGRET THAT IN THE
JAN. ISSUEOFW.W. DUETO
A TYPOGRAPHICAL ERROR A TYPOGRAPHICAL ERROR
THE CASSETTE DECK KIT (BE LOW) WAS INCORRECTLY
PRICED AT E15.95. THIS SHOULD HAVE BEEN E35.95.
THE COMPONENT PARTS
FORTHIS KITCOSTOVER FORTHISKIT COSTOVER $£ 40$
IFBOUGHTSEPARATELY

Regiai readers of WIRELESS WORLD will know of the original LINSLEY-HOOD CASSETTE DECK design, phblished in May 1976 . Subsequent articles by Mr. Linslyy-Hood have contirmed that the design tar exceeded his original expect
additional teatures to the original design, which are now incorporated in our:
-CASSETTE DECKKIT BASED ON DESIGN OF MR LINSIEY-HOOD \downarrow
We have developed an outstanding stereo cassette kit with the aid of Mr. Linsley-Hood, to complement the improved specification and lates
cassette electronics since the original design was published. The kit is ideal for use in coniunction with the JVC transport mechanism (above). Included in the kita are two fibreglass PCB 's. drilled and plated for immediate assembly, two V M meters. Dual LED Peak Meters,
10 micro-ircuit 1 C's for the most up-to-date periormance, as well as monitoring amplifier, test and calibration cassette, etc.

Price of Kit (without transport mech.) $£ 35.95$ VAT inc. plus $£ 1.00$ P\&P
Price of Case $£ 9.75$ VAT inc. plus $£ 1.00$ P\&\&.

WIRELESS WORLD. FEbRUARY 1980

POWERTRAN

PSI Comp 80 Z80. Based powerful scientific computer Design as published in Wireless World, April-September, 1979

The kit for this outstandingly practical design by John Adams being published in a series of articless in Wireiess" World really is complete
Included in the PSI coMP 80 scientific computer kit is a professionally sinished abine

PSI	80 Memory Expansion System
Mother Board:	Fibre, lass double sided plated through hole P.C. B 8.7" $\times 3.0^{\prime \prime}$ set of all components including ail brackets, fixing pants and riboon cabbe with socket to connect to expansion plug £39.90
RA	

Value Added Tax not included in prices

UK Carriage free

POWERTRAN COMPUTERS

(a division of POWERTRAN ELECTRONICS)
PORTWAY INDUSTRIAL ESTATE ANDOVER HANTS SP10 3NN

New books from Newnes Technical Books

Two Metre Antenna Handbook

F.C. Judd, G2BCX, FISTC, MIOA, Assoc. IPRE

* A comprehensive book for all operators on 144 MHz bands, which includes design descriptions Af omnidirectional and directional arrays
* Gives details for the first time of two original designs as well as the Slim Jim and the ZL
* By an author and designer of wide repute
$1980 \quad 166$ pages $£ 3.95$ US $\$ 9.00$
Coming Shortly - the new eighteenth edition of
Guide to Broadcasting Stations
* Lists stations broadcasting in the long, medium, short and vhf bands in both frequency and geographical alphabetical order
* More than 270,000 copies sold

200 pages approx. $£ 3.50$ approx. US $\$ 8.00$ approx.

On Newnes Technical'Books
 Borough Green, Sevenoaks, Kent TN15 8PH, England.
 Tel: (0732) 884567

Butterworths has companies in Australia, Canada, New Zealand, South Africa and the USA, where local prices apply

WIRELESS WORLD. FEBRUARY 1980

\star SEND FOR COMPLETE LIST. \star					
GAMES					4.652
	D. Lievy	${ }_{5}^{4} 4.16$	Programming in lascal.		\% 7.84
32 Basic Programs for the Pet.		¢¢11.84 8.90	A Practical Intro. to Pasca	A. Addyman .	${ }_{\text {¢ }} 9.50$
Game Playing with Computers	D. Susncer	eilu:zo	An Introduction to Programming and		
Basic Computer Games Star Ship Simulation	D. Ah1	\% 3.50			¢ 8 9.50 6.95
Game Playing with Basic	D. Spencer		z80 Books	J.Welish \% J. Eld	
Sargon	Spracklen	¢ 9.50	Z80 Programming for Logic Design	A. Osbourne	
MISCEI,LANEOUS			280 Technical Manual		${ }_{\text {\& }}^{5} 5.00$
Intro. to TRS 80 Gra		£ 5.75	${ }_{280}^{\text {Z80 P10 Programming Manual }}$	Zis	£ 3.25
Microprocessors C20	Zaks	£ 7.50	${ }_{280} 880$ Microcomming Manual ${ }^{\text {a }}$		
Scelbi Byte Primer		f 9.95	Practical Microcomputer Handbook	W. Barden	£ 6.95
Business Data Systems	Clinton		Programming (Z80).		
Your Home Computer	${ }_{\text {White }}$ Atwood	${ }_{\text {¢ }} 6.600$	Z80 Instruction Handboo		${ }_{\text {¢ }} 21.55$
Programming a Micro 6502		${ }_{\text {¢ }}{ }^{2} 7.95$	Z80 Assembly Language		
${ }^{602}$ Applications Handbook	Zaks	${ }_{\text {f }} 8.95$	$\xrightarrow{\text { Programming }}$ Introduction ${ }^{\text {a }}$, 0°	A. Osbourne	6.95
$\frac{\text { BASIC }}{\text { Learning }}$ Basic Fast			Zilog Data Book. ${ }^{\text {a }}$,		
Basic Basic ${ }_{\text {c }}$	De Rossi	6.30	28001/Z8002 Product		
Advanced Basic	J. S. Coan	${ }_{¢}^{5} 5.50$	Specification. 28000 CPU Instruction	Zilog	
Illustrated Basic	D. Alcock		${ }_{280} 8000 \mathrm{CP}$ Cro Instruction Set		
(Basic with Business Applications	Hayden	${ }^{2} 88.40$	Z80 Micro Programming \&		
${ }^{\text {Basic Pri }}$				Nichols	\& 7.10
The Basic Handbook			NEW bOoks		
COBOL			COBOL for Beginners	Worth.	
Cobol Programming	Nickerson	£ 6.95	$\xrightarrow[\text { BASIC for Everyone }]{\text { MICROS for Business Applicatio }}$	Worth.	
Learning Cobol Fast	Ne Rossi	${ }_{\text {f } 6.20} 6$	Fortran 77		
Reducing Cobol Complexity	Mc Clue	${ }_{\text {¢11 }}$	3 WREDIT SALES (Minimum f10), A Welcome. "BY RETURN O	ccess and Barclay RDER SERVICE	
CALLERS AND MAIL ORDER: 40 Bartholomew Street, Newbury, Berks. Tel: 063530505 CALLERS ONLY: 220-222 Stockport Ruad, Cheadle					

MHRULNE WATTMETER

The Standard of the Industry What more need we say.

Elusive UK repis

- $-\infty$ electronics limited

2 KILDARE CLOSE, EASTCOTE, MIDDX. HA4 GUR
TELEPHONE: $01-868$ 1188-TELEX 8812727

electronic kits of distinction from plilithali
DE LUXE EASY TO BUILD LINSLEY－HOOD 75W STEREO AMPLIFIER $£ 99.30$＋VAT

WIRELESS WORLD FM TUNER $£ 70.20$＋VAT

LINSLEY－HOOD CASSETTE DECK $£ 79.60$＋VAT

TRANSCENDENT 2000

abinet tize $24.6^{" 4} \times 15.7^{" 7 \times 4.8^{\prime \prime}}$（roar） $3.4^{\prime \prime}$（front）
CHROMATHEQUE 5000 5－channel lighting effects system

MrA200 100W MIXER／AMPLIFIER

COMPLETE KIT ONLY $£ 49.90$＋VAT

All kits also available as separate packs（e．g．
PC．c．component sets．hardware sets，etc．）．
Prices in FREE CATALGUE．

T20＋ 20 and T30＋ 30 20W，30W AMPLIFIERS

 SPECIAL PRICES FOR COMPLETE KITS T20＋20 KIT PRICE $£ 33.10$＋VAT T $30+\mathbf{3 0}$ KIT PRICE $£ \mathbf{3 8 . 4 0}+$ VAT avallable as separate packs－prices in our free cátalogue POWERTRAN SFMT TUNER

PRIGE FOR COMPLETE KIT $£ \mathbf{3 5 . 9 0}$＋VAT

NCREASED CAPACITY AT OUR BIG NEW FACTORY
MEANS MANY PRICES DOWN！ALL OTHER FROZEN！
Another superb design by synthesizer expert Tim Orr！
TRANGEEMDEMT DPM
As featured in Electron
October， 1979 issues
DIGITALLY CONTROLLED，TOUCH SENSITIVE，POLYPHONIC，MULTI－VOICE SYNTHESIZER

EXPORT A SPECIALITY！

Value Added Tax not included in prices Value Added Tax n
UK Carriage FREE

id $\{2.50$ NAT inclusivel per kit．

 NEW FACTORY ON SAME INDUSTRIAL ESTATE
ADDRESS AND PHONE NUMBER UNCHANGED
our catalogue is FREE！write or phone NOW！
POWERTRAN ELECTRONICS
ANDOVER，HANTS SP10 3NN

CALLERS ONLY: 220-222 Stockport Road, Cheadle Heath, Stockport Tel: 0614912290 send for our november catalogue and book list.

West Hyde have the greatest range of instrument cases

WIRELESS WORLD, FEBRUARY 1980

Sameson's

9810 CHAPEL ST., LONDON, N.W. 1

$01-7237851$ | O1-723 7851 |
| :--- |
| ADJACENT TO EDGWARE ROAD MET. LINE STATION |

 OPNTriftaf citidetions

YOUR COMPLETE RANCF OF ELECTRONIC MARDWARE.

BIMBOARD 1 £ 9.40
BIMBOARD 2 f22.37
BIMBOARD 2 £ $£ 2.37$
BIMBOARD 3 £ 31.83)
BIMBOARD 4 £41.53
designer prototyping system 2. or 3 BIMBOARDS mounted on BIM 6007

...fom =apes
INDUSTIIAL MOULDINGS LIIITIED

The $\mathbf{7 2 0 8} \mathbf{6 0 0} \mathbf{~ M H z ~ M i n i ~ C o u n t e r ~}$

the quality low cost counter
features.

- All Metal Cabinet © 8 Digit .4" LED Display Q Built-in Prescaler Automatic Dp Placement Gate Light IC Sockets Included
or 12 V Operation Proportional Control Crystal Oven (Optional)
Builtin VHF-UHF Preamp Completely Portable with Rechargeable Built-in VHF-UHF P Completely Portable with Rechargeab
 available from the exclusive u.k. distributors: SOTA COMMUNICATION SYSTEMS LTD. 26 CHILDWALL LANE, BOWRING PARK, LIVERPOOL L14 6TX
MERSYSIDE, TEL. 051 .480 5770 Telex 627110 SOTA G. MERSEYSIDE. TEL. 0514805770 Telex 627110 SOTA G

DESCRIPTION
The Davis 7208 VUF-UHF Frequency Counter incorporates the latest LSI
technology in a wide e range portable instrument at a reasonable price. The 7208

The 7208 can also be operated
option. Price $£ 145.00+$ VAT.

ww - or3 FOR FURTHER DETALLS

MAIL ORDER PROTECTION
 SCHEME

 SCHEME (Limited Liability)

...

TV TUBE REBUILDING

Faircrest Engineering Ltd., manufacture a comprehensive colour and mono Standardessing or altotypes of picture tubes
coult units for estab
lished or new businesses. We enport world.wide lished or new businesses. We export world-wide and have an
excellent spares service backed by a strong technical team. Full training courses are individually tailored to customers
reauirements.

For full details of our service contact Neil Jupp
FAIRCREST ENGINEERING LTD.

> Willis Road, Croydon, CRO2XX C1-684 1422, 01-689 8741

WW - 020 FOR FURTHER DETALLS

Penny Dropped?

Switchcraft QG Connectors are money savers Because we have introduced an attractive new quantity discount
structure. Switchcraft are still the same high quality, with unique structure. Switchcraft are still the same high quality, with un
eatures such as captive design screws and shell ground Two new additions to the range are -FAS-DISCONNECT AS-DISCONNECT new non-locking feature allowing immediate disconnection that equipment take-down in hard to. reach, darkened REAR MOUNTED RECEPTACLES The new Y series QG receptacles permit a complete sub assembly
to be soldered. cleaned and tested prior to chassis mounting.
Available with PC or solder terminals with lock
 rimming and colour coding.
witchcraft QG Connectors are just right for audio
mixers consoles, PA systems and in computer application ixers consoles, PA systems and in computer applications.
he professionals choose Switchcraft $Q G$ and save the pennies!
GMTHETEANA Q
FW.O. Bauch Limited
49 Theobald Street, Boreham Wood, Hertfordshire WD6 4RZ
Telephone 01-953 0091, Telex 27502

ORGAN and PIANO KEYBOARDS DALSTON ELECTRONICS 40a Dalston Lane, Dalston Junction London, E8 2AZ Tel: 01-249 5624	STEREO DISC AMPLIFIER 3 A reference amplifier for disc monitoring and transfer when replay signals of the highest quality are required. Please ring or write for six page specification leaflet. Reviewed in November issues of Gramophone, Hi-Fi for Pleasure and (D) A1119 P.O. Box 1 Cranleigh, Surrey GU6 7JF. Tel. 048666477 Crangh, 0.026477	

CROPICO-A CERTAIN MEASURE OF PERFECTION

 Cropico, established as one of Britainsleading manufacturers of precision electrical meacururing equipmecist, offer
a wide range of instruments which a wide range of instruments which
have been proved for accuracy and
performance throughout the world. Resistance Boxes
Resistance Bridges Resistance Bridges
Resistarn
R.C. Potenentiometaters
D. ${ }^{\text {D.C. }}$. R Potentioneters

 Cropico- Britains leading
manufacturer exporter and importe
of precision electrical measuring manuacturer, exporter and impo
of precision electrical measuring
equipment. equipment.
Request full details - Visitors Welcome CROPICO LTD., Hampton Road, Telephone: $01-6844025$ and 4094 Cables: CROPICO-CROYDON
Telex: 945632 CROPCO G

FOTOLAK

G. F. MILWARD ELECTRONIC COMPONENTS LIMITED

HI-FI TONE ARM BARGAINS
-from Britain's Leading Audio Store
 BARGAINSAVAILABLEFROMTHECOMMUNICATIONSCENTRE: C ONIC SOUND AUDIO

WW - O75 FOR FURTHER DETAILS

WIRELESS WOPLD FESBuativi 198

RADOTELEPHONE EQUIPMENT
Pye Westminster W W $15 A M$ high band vailable, Sets complete and in good condidition buu
are less speakers, mikes, cradles and LT leads. sets ony $£ 77.00$ each.

 Ye Westminster w30AM oow band, sats only no
Control sear, completet and in oood condition.
and

 Pye preve uhf portale, compíate and good
condition but untesede, tew onny at 65.00 each. Pye Europa MF5U 3 channel UHF mobile good
condition E99.O0. Pye Reporter MFGAM Migh band mobile, very good
condition EzOO.OO.

 Ic AuDIO AMP. pCB. Somx

Wil
 tenuators. suan tor Ax or Low power Tx Txixed
 for 11.50 .
OSMOR REED RELAY COILS

 EASUGLE MA780T Electric fully automatic 6 section retractable car aerial with
built-in voltage sensor. Remote drive system makes fiting easier. Aerial lenoth, TOOMm. Price E16.95 PIus VAT.
 $0-1200$ volts, DC current $0-6 \mathrm{~A}$, Resistance 0 - 10 megotms. Price $£ 19$. 95 polus
VAT.

 Weqlite instant heat guns Model No. 81000 £13.21 each plus VAT.
WELER
WErates sidering irons Model No. WC 100 £25.47 plus VAT.
 ECA TVT $78 / 78$ semiconductor equivalent and data books. Data covering
12,000 transistors and more than 60,000 equivalents. 2 volumes for $E 6.00$ ORYX DE-SOLDER TOOLS. model SR3A, desoldering pump with builtil
safely guard. Price E6. 50 pius VAT. AUCTION NOTICE
mornings of Radio \& Electronic componentis $\&$ equipment you bring and buy

there are transformers and....

Drake
Transformers

OEM - let Drake Transformers advise you on a component specification and design to solve that special problem. Preproduction prototypes and development undertaken as necessary.

Well known over a quarter century for personal service and high-quality products, Drake specialise in the design and manufacture of transformers and other wound components for large and small quantity production.

Expertise and service put DRAKE TRANSFORMERS in a class of their own.

DRAKE TRANSFORMERS LIMITED
South Green Works Kennel Lane Billericay Essex CMII 2SP
Telephone: Billericay (02774) 51155 Telex: 99426 (prefix Drake)

WIRELESS WORLD, february 198
Versatile Professional Hand Tools
'SERIES 99' from XCELITE

99MP

Multi-

 purpose tool kit

Al most neded 99 Series tools etc.
sinios or otterer tools.
99PS40. Allen Hex Socket S/driver

 99PS50 13pc. S

\qquad
 SPECIAL PRODUCTS DISTRIBUTORS LTD Tol. 01.629 9556. Cabloens. spociprod, Lend ion, w. 1

(vatextra)
Please contact us for quantity discounts and types not listed and guaranteed. We supply Government Departments, Uni versities and major manufacturers.

UNIT D6, PEAR INDUSTRIAL ESTAT STOCKPORT ROAD WEST LOWER BREDBURY
STOCKPORT, CHESHIRE SK6 2BP STOCKPORT, CHESHIRE SK6 2BP

To obtain further details of any of the coded items mentioned in the Editorial or Advertisement pages of this issue, please complete on or more of the attached cards entering the reference number(s). Your enquiries will be passed on to the manufacturers concerned and you can expect to hear from them direct in due course. Cards posted from abroad require a stamp. These Service Cards are valid for six months from the date of publication.
Please Use Capital Letters

If you are way down on the circulation list, you may not be getting the information you require from the journal as soon as you should. Why no have your own copy?

To start a one year's subscription you may apply direct to us by using the card at the bottom of this page. You may also apply to the agent nearest to you, their address is shown below.

OVERSEAS SUBSCRIPTION AGENTS

Avenue West, Toronto 195,
Ontario

ermark:

Hovercaussade 8,
HK. 11103 Kobobnhuv.

Germany:W.E.ESaribach
GmbHH,5Koln

oilestassa 2,

 India: International Book
House, Indian Meicanilie House, Indian Marcancrile
Mansion Eti Madimm
Coma Roap, Bomaxy


```
    Mostage will
    M be paid by 
```

```
BUSINESS REPLY SERVICE ORLD,
WIRELESS WORLD,
    PRODUCT REPLY SERVICE, 429 BRIGHTON ROAD, SOUTH GROYDON, SURREY CR2 9PS
```


Please arrange for me to receive further details of the products listed, the appropriate reference numbers of which have been entered in the space provided.
Name.
Name of Company .
Address.
-
USE ONLY
Nature of Company/Business
No. of employees at this establishment.
ALID FOR SIX MONTHS ONLY

Wireless World: Subscription Order Form

To become a subscriber to Wireless World please complete the reverse side of this form and return it with your remittance to:

Subscription Manager,
IPC Business Press,
Oakfield House, Perrymount Road,
Haywards Heath, Sussex RH16 3DH,
England

Enquiry Jervice
Readers ONLY.
WRELESS WOLD Wi les Wo F blary 190 WW
Pease arrange for me. to receive further details of the products listed, eappropriate reference numbers of which have been entered in the space provided

Position in Company
Name of Company
Address.

Telephone Number

Nature of Company/Business
No. of employees at this establishment

VALID FOR SIX MONTHS ONLY

SOUTH CROYDON,

SURREY

CR2 9PS

Wireless World Subscription Order Form Wireless World,'February 1980 WW 062

UK subscription rates
1 year: $£ 9.00$
Overseas 1 year: $£ 12.00$
Please enter my subscription to Wireless World for 1 year
I enclose remittance value.

Name..
Address

USA \& Canada subscription rates 1 year: $\$ 31.00$

Now you can get Avo quality in digital thermometers. There are two units to choose from. The AT1, a battery operated, portable unit which is fast, accurate and easy to use; and
Both feature large, easy to read displays, and together cover a wide temperature range The range of 5 thermocouple probes enables measurement of inside of a joint of beef!
Learn about the full benefits of the new Avo digital thermometers, get in Avo distributor.

AVO LIMITED,
Archcliffe Road, Dover, Kent,
CT179EN.
Tel: 0304202620 Telex: 96283
rnorn measurement \& Components Divi
ww - 083 For

In three years there will be 300,000 personal computers in Britain: an essential part of every professional person's working life. Practical Computing is the leading journal in this important and fast growing area.

February Issue
on sale now at all good newsagents at 50p. Oakfield Ho., Perrymount Rd., Haywards Heath, W. Sussex RH16 2DH.

Subscriptions: £6, Subscription Servicing, 2nd Floor postroom,

TEXAS SILENT 700

Model 733ASR $£ 1,450.00$. Model 742 £1,750.00.

TERMIPRINTER 7075

BALL MIRATEL MONITOR

DEC PDP11/04 SPECIAL PURCHASE

ASR33 and KSR33
TELETYPES
 SHUGART
FLOPPY DISC

DEC EQUIPMENT

PDP11/40 System 48 KW Parity Core Proces: mplete with KT11D Memory Management, DL KO5J Disc Drives, $2 \times 6 \mathrm{ft}$. Rack Cabinets, FL
EC maintained in immacu

KO5J Add-on disk drive (for PDP11/04: a
MM11DP 16 K parity core

PR1 1 High Speed Paper Tape Reader \& Control

PRINTERS \& TERMINAL

CENTRONICS 101 Matrix Printer
GE TERMINET 300 KSR 1 Prinact Printer
GT TERMINET 1200 RO Impact Printer GAZELTNE H-1200 VDU Impact Printe
HA $12 . .$. HAZELTNE DATA Electrosensitive Printer
SCOP $\begin{array}{llll}\text { STOPE DATA Electrosensitive Printer } & £ 495 \text {. } \\ \text { TEKTRONIX } 611 \text { XY Storage Monitor } \\ £ 1,350 \text {. }\end{array}$

NEW ASCII KEYBOARDS

-NEW LOW PRICES

KB756 56 -station ASCIII Key-
board mounted on P.C. bBard mounted on P.C.B.
KB756MF As above, fited with metal mounting frame for extra
rigidity rigidity 10 -key numeric pad,
KB17
supplied with connecting cable supplied with connecting cable
KB701 plastic enclosure for KB701 Plastic enclosure for
K8756 O K8756MF KB702 Steet enclosure for
KB756 KB756MF
K82376 Spare ROM Encoder . KB2376 Spare ROM Encoder.
KB15P Edge connector for
KB756 or KB756MF $\mathrm{DC}-512 \mathrm{DC}$ convertor to allow
operation at 5 V only (plugs in to
PPC. B.)
KB7
Ki-station ASClil Key-
KB771 71-station ASCII Key-
bard including numeric
ard cursor control cluster, mounted in steel enclosure
DB25S Mating connector for ${ }^{\text {KBB71 }}$ PERK 56-station ASClil Key board ior PET. Complete wit
Puply and steel enclon powe
suple supply and steel enclosure Discor $£ 145.00 £ 17$

MISCELLANEOUS

AMPEX $1^{\prime \prime} \times 3000^{\prime}$ Video Tape
CALCOMP 565 Drum Plotters CIPHER $100 \times$ Magnetic Tape Drive DATA GENERAL NOVA 12104 K CP
DIGIIRONICS P120 Paper Tape Pun EMI 15 ' Diagonal TV Monitiors
SEALECTRO 11×20 Patch Boards
£4500

Electronic BrokersNo.lin Seecond Use
 49/53 Pancras Road LondoṇNW12QB Tel: O1-837 7781. Telex 298694 ONLY SMALL SELECTION OF OUR VAST STOCKS SHOWN HERE - SEND FOR LATEST CATALOGUE Electronic Brokers unique catalogue contains 62 pages plus update of second user Test Equipment, and Mini Computers and Peripherals Vast lists of Signal Sources, Oscilloscopes, DVMs, Counters, Recorders, DEC Computers, VDUs, Teletypes, etc Oscilloscopes, DVMs, Counters, Recorders, DEC Computers, VDUs, Teletypes, etc. Largest stocks - most cost effective,

 Test

 Test Equipment
 HEWLETT PACKARD $203 A$ Variable
 WAVETEK 135 Lin $/$ Log Sweep Funct Generator. $0-2 \mathrm{~Hz}-2 \mathrm{MHz} .10 \mathrm{~V}$ i

 Largest stocks - most cost effective.LATEST EDITION. SENT FREE IN UK
Airmail to overseas addresses $£ 2.00$

Unless otherwise stated all equipment offered in the Electronic Brokers advertisement is	
advertisement is refurbished and in the case	
of Test Equipment also	VAT to ALL
calibrated. Test equil	
months; computer	Carriage
${ }_{\text {Hours of }} 9$ a Busin	rge
Closed lunch 1-2 p.m.	

A copy of our trading
conditions is available on

WW - 051 FOR FURTHER DETAILS

NEW EQUIPMENT
 HAMEG SCOPES

(from W. Germany)
from 10 MHz to 50 MHz
page at rear of this
magazine.
AVAILABLE EX-STOCK
ICE MULTIMETERS (from Italy)

680G \& 680R and their accessories always in stock.

on
 $\stackrel{i m}{\text { inm }}$

TEKTBONIX

 OIGITAL COUNTERS OIGILAL COUNTERS 500 MHz Counter TE15+15P1 $£ 495$
80 MHz Counter TC 17 or TC17AE195
$\left.{ }^{2}\right)$ FUUKE
125 MHz Multi-Function Counter
$1910 \mathrm{~A}-1$
520 MHz communications Counter

 1912 A
PHILIPS

$$
\begin{aligned}
& \text { 202H } \mathrm{FM} / \text { AM Signal Generator } \\
& 54 \\
& \hline
\end{aligned}
$$

 IGITAL VOLTMETERS \& MULTIM
ADVANCE
 $5 / 2 /$ digit D.M.M. 1051
RUKE
$41 /$ digit D.M.M. 8600 A
$4 / 2$ digit D.M.M. $8600 \mathrm{~A}-01$

 HEWLETT PACKARD
$5 / 2 \mathrm{~L}$ digit D.M.M. $34702 \mathrm{~A}+34740 \mathrm{~A}$
 PHILIPS
4 digit D.M.M. PM 2424 31/2 Digi. D.M.M. PM PM PM 2413 A
Autoranging D.M.M. PM 2514

203A Variable Phase Sine \& Square
Wave Generator $0.005 \mathrm{~Hz}-60 \mathrm{kHz}$ Wave Generator
651 B Oscillator $10 \mathrm{~Hz}-10 \mathrm{MHz}$.

$420 \mathrm{MHz} 0.1 \mu \mathrm{~V}$-O 5 V into 50Ω AM:
$0-95 \% \mathrm{E}$
08 E

608 MHz
608 FHF Generator $10-455 \mathrm{MHz}$
 $612 A$ UHF Signal Ge........ $£ 450$
1230 MHz
$540-1$ 61230 MHz 1850
4204 Hz
1 MHz Decade oscillator. 107750 MARCONI INSTRUMENTS
TF144H/4 AM Signal Gene MARCONI INSTRUMENTS
TF144H AM AM Signal Generato
$10 \mathrm{kHz}-72 \mathrm{MHz}$

 TF $0 \mathrm{kHz}-470 \mathrm{MHz}$
Tignal Generator
IT

 $10-400 \mathrm{MHz} 0.1,1 \mathrm{~V}-1 \mathrm{~V}$ into 50Ω. AM
$0.90 \% @ 1 \mathrm{KHz}$ Demodulator outnut 0.90\% @ 1 kHz Demodulator output,
75 MHz rystal
TF95
 200 kH
TF 11
200kt
 TF1370A R-C Oscillator 1275
TF2012 UHF Signal Generator. 400 -
520 MHz 520 MHz
TF 2005 T Two Tone AFSignal Source.
2 . 2 identical oscililators $20 \mathrm{~Hz}-20 \mathrm{kHz}$.
$10 \mathrm{dBm} \mathrm{O} / \mathrm{PO} \mathrm{l} 111 \mathrm{~dB}$ attenuator 10dBm O/P O-111dB attenuator
TF2ioi MF Oscillator. $30 \mathrm{Fzz}-550 \mathrm{kHz}$
 TF2102M/1 AF Oscillator 3Hz-30kHz
 SINGER
FM-10 Decade Switched FM Signal
Generator. Up to 500 MHz . $£ 1200$ PHILIPS
PHILIPS
PM 167 Function Generator. $1 \mathrm{MHz}-$
10 MHz Sine, square 10 MHz Sine, , square \pm pulse, ramp,
triangle, single shot with variable phase PM5127.............. $£ 675$ PM5127,
square
SSM5
squa
PM
sau
0fts
.
.
litzous
PM53
PM

TELONIC

2003 Sweeper Min
3302,333
2003 Sweeper Main Frame c / w
$3302,3331,3341,3351,3360$ and
3370 modules 3370 modules. Frequency range 0-
300 MHz sweep width with -100% of
1dB
0.01
0.01
mark markers. Internal AM/FM modula-
tion. Internal detector markers. Internal AN
tion. Internal detector
TEXSCAN

Generator. $0-2 \mathrm{~Hz}-2 \mathrm{MHHz} .10 \mathrm{~V}$
50 O S. Sine square triangle. Sweep
$10 \mu \mathrm{~S}-10000 \mathrm{~S}$ SOUND LEVEL METERS BRUEL \& KJAER
Sound Level Meter 220 Sound Level Meter 220
GENERAL RADIO Portable Sound Level Meter, 1983 1933 \& 1935 1933 \& 1935 portable Sound 4
Meter with data cassette recorder MISCELLANEOUS DDVANCE ower Supply PMA 50
-15 V 5 A (selectable) Power Supply PM 53
$0-15 \mathrm{~V} 10 \mathrm{~A}$ (selectable) BIOMATION
16 Channel
BOONTON BRADLEY Voltmeter 93 C Voltage Calibrator 126B
BRUEL \& KJAER Electronic Voltmeter 2409 Elecironic
DATA LABS
Power Line Distur Power Line
DYMAR
LF Wave Analyser 1771
AM/FM Mod. Meter 1785
F Distortion Meter 1765 LF Distortion Meter 1765 R.F. Power M
GRETSCH

Complex Ratio Bridge CR1B
GENERAL RADIO
Vibration Analyser 1911A
HEWLET PACKARD
Camera 195A
Camera 198A
rue R.M.S. Voltmeter 3400 A 䐧
6 Channel Logic Analyser
AC Voltmeter 400F
Wave Analyser 310A
YONS
Pulse Generator PG 222
MARCONI INSTRUMENTS F Transmission Test Set TF2332 Distortion Tester TF2 Deviation Meter TF791D
Electronic Voltmeters TF260 ater system TF1245/46/47
 AM/FM Mod. Meter TF2300A 55 AM/FM Mod. Meter
RF Millivolmeter TF2603
iAf VVItmeter TF 2606 Diff Voltmeter TF2606

D.F.M. TF2331 C.M. Regen. Tester TF2342 | PHILIIPS |
| :--- |

Pulse Generator PM5715
AC Millivoltmeter PM2454 Pattern Generator PM 5501 Wow \& Flutter PM 6307
OHDE \& SCHWARZ Stereocoder MSC. Soreocodrti MSC
SOLART

Communications

AN INVITATION TO

Communications 80, the fitth in a dealing with the applications communications equipment and systems, particularly in the major
growth areas of growth areas of data and business communications which are being
created by the converging tech- \qquad (ii nologies of computing and telecommuni-
cations. The other important themes of cations. The other important themes of the
exposition are PTT telecommunications. exposition are PTT telecommunications, civil fixed and mobile
radio and emergency communications.

Communications 80 will a
(from 69 countries at the last event in 1978) see the latest developments in communications technology displayed by leading international manufacturers. Many of the Institution of Electrical Engineers in association with leading international learned societies, to learn about the latest technical advances in communications equipment and systems
Communications $\mathbf{8 0}$, the world's leading international position in the field, is actively supported by the International Telecommunication Union - the world telecommunications
authority representing 153 governments the authority representing 153 governments; the British government,
through the Home Office; the British Post Office; Cable and Wireless Ltd; and the two main UK trade associations - the Electronic Engineering Association and the Telecommunications Engineering and Manufacturing Association.
Please make a note of the dates and venue of
at the National Exhibition Centre, April to Friday 18 April, 1980, , Nainal Exhibition Centre, Birmingham, England.
You cannot afford not to come if you make, use or specify
communications equipment and systems.
I am interested in attending

Communications 8 D

Please send me details of exhibition \square conference \square
Name
Position
Company
Address \square

Complete, detach and mail to
Tony Davies Communications
Blenheim Court,Solihull Weirs Ltd, Radsliffe House,
Telephone: 0217056707 Thand Telephone: 0217056707 Telex: 337073

A major exhibition of computers, peripherals, terminals and services, held each spring in the most highly industrialised area of Western Europe. Comper HRIDE 80

Centre International Rogier, Brussels, May 6, 7 \& 8, 1980

The ever-growing international attendance gives Compec Europe exceptional status as a sales platform for providers of hardware, software and services from every country. Ensure participation in its benefits by posting the coupon below.

GOMPEG EUROPE' 80 STAND RESERVATION FORM

To: The Exhibition Manager, Compec Europe, Room 821, Dorset House, Stamford Street, London, SE1 9LU, England
Please provisionally reserve for us stand space at Compec Europe 80 and send the undersigned more information.
Name Company

4 $11100^{\pi} 11$ Betber Performance

APLAB 3131 PORTABLE OSCILLOSCOPE $5^{\prime \prime}$ DUAL TRACE, 15 MHz (3dB) AT £260 + VAT APLAB 3131 Dual Trace DC to 15 MHz Triggered Oscilloscope has, two fully calibrated 12 step vertical Attenuators
from $5 \mathrm{mV} / \mathrm{cm}$ to $20 \mathrm{~V} / \mathrm{cm}$ and a fully triggered Time base with 18 calibrated sweep speeds, $5^{\prime \prime}$ ' flat-faced CRT with a full $10 \mathrm{~cm} \times 8 \mathrm{~cm}$ graticule. Channel 11 Attenuator also acts as calibrated Horizontal Amplifier control in $X-Y$ mode. An Attractive case of $11^{\prime \prime} \mathrm{H} \times 88^{1 / 2}{ }^{\prime \prime} \mathrm{W} \times 15^{\prime \prime} \mathrm{D}$. Weighs only
26 lbs. Operates on $110 / 220 \mathrm{VAC} 45-65 \mathrm{~Hz}$ at 25 W . $45-65 \mathrm{~Hz}$ at 25 W
APLAB 3030 MINI-OSCILLOSCOPE AT $\mathbf{£ 1 7 0}+$ VAT
10 MHz , Portable (10 lbs), Triggered, Calibrated Scope. $3^{\prime \prime}$ CRT, 1 KV Acc. potential: DC-10 MHz Bandwidth, $5 \mathrm{mV} /$ div. - $20 \mathrm{~V} / \mathrm{div}$. sensitivity, $0.2 \mathrm{sec} / \mathrm{div}-0.5 \mu \mathrm{~S} / \mathrm{div}$. sweep speeds $1,2,5$, sequence. EXT $\times, 400 \mathrm{mV} / \mathrm{div}, 1 \mathrm{MHz}$ bandwidth. Dimensions: $81^{\prime \prime \prime} \mathrm{H} \times 412^{\prime \prime} \mathrm{W} \times 10^{1} 1^{\prime \prime} \mathrm{D}$. For discounts, distributorships and direct purchases contact: CROUCHCLIFF LIMITED
VICtoria house, 26 Queen victoria street, reading RGI, ITG, U.K., TELEPHONE: (0734) 6928 26/(0734) 595047 TELEX: 847777 'DELRAYG'.
WW - 069 FOR FURTHER DETAILS

ELECTRONIC VALVES WANTED

All Types Receiving, Transmitting, Industrial PL504-PL802-PCL805-CV131-CV136-CV138-CV329-CV345-CV450-805-807-813-2K25, Etc. YPE HAYES RADIO LTD 606 Kingsbury Road irmingham B24 9P 021-373 4942

> ANY MAXE-UP OR COPY QUERES CONTACT JOHN GIBBON OR TONY FAYERS. 01-261 8353

TERMINALS

Weieght
KELSEY ACOUSTICS LTD 28 POWIS TERRACE, LONDON WI1. TEL: $01-7271046$

NEW YEAR SPECIAL OFFERS
SCOPES - SCOPES - SCOPES
OVER 75 SCOPES EX-STOCK NOW FROM £25.00 UPWARDS RING OR CALL FOR DETAILS

BULK BUY SEMICONDUCTOR SAVINGS

ww - OT7 FOR FURTHER DETAILS

XABL

Electronic Tubes Semiconductors

For use in Professional Equipment

Exceptionally wide range of spares for most equipment in use

Write for catalogues or just state your requirement to

Telephone: Horley (02934) 5353
Telex: 87116 (Aero G Horley)
Cables: Aero G Telex Horley
WW - Oso FOR further details

SJRVICETRADNGCO

AOQOMEHAS

Advertisements accepted
up to 12 noon Friday, up to 12 noon Friday,
February 1st for March February 1st for March
issue, subject to space being issue, subj
available.

DISPLAYED APPOINTMENTS VACANT: $£ 10.00$ per single col. centimetre (min .3 cm) LINE advertisements (run on): $£ 1.50$ per line, minimum three lines.
BOX NUMBERS: 70 p extra. (Replies should be addressed to the Box Number in the advertisement, c/o Wireless World, Dorset House, Stamford Street, London SE1 9LU.
PHONE: Neil McDonnell on 01-261 8508 Classified Advertisement Rates are currently zero rated for the purpose of V.A.T.

DESIGN \& DEVELOPMENT ENGINEERS

Are you sceking an opportunity to work on analogue and digital techniques?
If so, join Rediffusion and work on a number of exciting projects associated with the design and
development of equipment for production lin lesting of our future colour TV receivers.

Effective testing plays an important part in ensuring that the finished product reaches the high quality levels necessary for success during flexibility of our testing, new equipment will be microprocessor controlled. Even if you only have limited knowledge of digital techniques this opportunity will enable you to learn the mysteries of microprocessors and their application to esting complex electronic sub-assemblies

Applications are invited from engineers with a creative ability to work in a congenial and stimu -
lating environment at our Engineering Centre at Chessington, Surrey. We have vacancies at senior career advancement. Salaries are obviously commensurate with qualifications and experience, but will be extremely attractive to those engineers
whose test equipment background is such that they whose test equipment background is such that they
can, make a significant contribution to the performance of our test gear team.

The usual big company benefits, such as pension scheme, free life insurance, 4 weeks holiday with choice of leave period, sports facilities and assistance wih relocation expenses are offered for these posts.

If you are interested in these challenging positions matter in depth please write or tole

$$
\begin{aligned}
& \text { Mr. H. Brearley, } \\
& \text { Head of Technical Services, } \\
& \text { Rediffusion Consumer Electronics Ltd., } \\
& \text { Fullers Way South, } \\
& \text { Chessington, SSurrey. KT9 1HJ. } \\
& \text { Telephone: } 013975411
\end{aligned}
$$

LEVER (AUDIO) LTD

Audıo and Electronic Equipment Manufacturers

LOUDSPEAKER DESIGNER

 Experienced in the design and manufacture of loudspeaker systems. The applicant must have had severalyears experience in the industry and be familiar with the design of driver units.
We are an established expanding Company with 90% export to over twenty different countries

An exciting opportunity exists for someone with a practical outlook to see the product of their endeavours.

Salary is negotiable, subject to experience.
Apply in writing with a brief c.v.a.
e Managing Director 29 Heathfield Stacey Bushes, Milton Keynes, Buckinghamshire. MK12 6HR.

ELECTRONICS/CONTROL ENGINEER SENIOR MECHANICAL DESIGN ENGINEER ELECTRONICS TECHNICIAN
URGENLLY REQUIRED TO EXPAND OUR R. \& D. TEAM WORKING in
MEDICAL REHABILITATON ENGINEERING. Stimulating and rewarding work with excellent pay offered by long-established
Company specialising in the development and supply of Artificial Limbs and Aids or the disa
Senior Macharial Enginar:
Experience in bio-mechanical engineering, light engineering or aerospace
design, preferabal ywith experien
Rese
 Electronics / Contron Engineer:
obe responsible for all product development and liaison with sub-contractors.
xperience in design of low power Experience in design of low power, low noise analogue is essential.
with digital and electro-mechanieal systems would be advantageous. Eloctronics Technician:
Experience with development of prototype electronic circuit breadboards. The
range of work is varied and the bily
rlose aspe liaison with an engineer and with the minimum supervision, is essential.
Applicans t. Applicants for the senior posts should
porven record of achievement.
Written applications /tele
Mrs Kap colt
HUGH STEEPER LTD.
Mrs. Kay Cole
HuG STEPER LTD.
237 Roehhampron Lan

237 Roehampton Lane
London, SW15 4L

Pye TVT~The challenge of world leadership in a unique city

Customer Service Engineering
We arelooking for an enthusiastic and sel--motivated
engineer who is able to work (after equipment training) on complex broadcast equipment with the minimum of supervision. The work involves the arising on equipment, including camearas telecins
and visin mixers, both in Cambridge and in the
and ifio and vision mixers, both in Cambidge and in the
field. The job also includes customer liaison, world-
wide travel and a very high level of job wide travel and a very high level of job
responsibility It would ideally suit someone looking
for variety and a strongelement of problem-solving Studio Installation
This is another position that offers the applicant the coupled with the responsibility of a highly technical and important iob. It involves the instalalation and
commissioning of our studios and associated commissioning of our studios and associated
equipment worldwide. This equipment nillcudes a a
variety of
recorders, outside bras, broadcast latest vans video tape
reand sound recorders, outside broadcast vans and sound
studios. The iob would probaly suita y young
endiner who wishesto gain a greater knowledge of.
TV systems. engineer who

Test Engineering
This opening is for an engineer to work with
transmitter co-axial equipment. The overall Iransmitter co-axial equipment. The overall purposese
of the oob is to test and aligm a broad range of co-axial of the oio is to test and align a broad range of co-axial
combining and switching equipment. Wére looking
for someone who is able to ooperate independently for someone who is able to operate independently
and work to shhedules, witha a strong background of
work on co-axial lines, way Quality Ässurance
Our Quality Department plays an integral part in a complex, technical, yet highly commercial
environment, auditing the safety and pertormance of our equiument for ade cautety quadititerrovelmance
our
reputation depends on their judgement, expertise reputation depends on their judgement, expertise
and instincts
We are e ither looking for a young graduate in electronic engineering, who has gained 2 or 3 years
experience in industry, or someone with a solid backround in electronic quality assurance, who
quadifies for membership of 1 Q.A. Our industr is
being revolutionised by cossors, andutionised by the advent we are lonk ming micropro-
able to cope with these changes. He or she we be be able to cope with these changes. He or she will be
involved, form the quality point of view, inthe design
and development of new equipment, as well as being involved, rrom the equality point of view, in the design
and developmento newe ouvipment, as well as being
concerned with the production process.

We are offering generous relocation expenses, very good salaries and excellent working
condititons for all of these eopsitions. For further informadion or application forms, please
contact David Barnicoat on Cambridge conditions for all of these positions. For further information
contact David Barnicoat on Cambridge (0223) 45115.

Transmitter Development Our continued success in the transmitter field worldwide, means we now have attranativiviteop fienidg world in this
department at all levels. Wére looking for people department at all levels. We're looking for people
with the baility to take responsibility for all aspects of
dies design in TV, FM and AM sound broadcasat trans-
mitters. Applicants should be qualified to t least
H.N.D. level with a minimum of around two years development experience - but the most important qualities are the interest and enth

Studio Development

We are looking for peopple to jin a highly-skilled
development group, specialisisng in the design and development group, specialising in the desising and
development of studio equipment. As we are development of studio equipment. As we are
constantly initiating new developments, including a range of dioital products used in signali l procoussing
and control, we would like to meet adaptable young
 sponsibility for all a aspects of digital equipment
desigig for broadcast TV applications. Qualifications
to degree standard are required tor these posts to degree standard are required for these posts.

Radio Technicians Work in Communications R\&D and add to your skills

CHEESEA COLEGE
Univarity y
London ELECTRONICS WORKSHOP
 EER (GGade 5$)$ required for interesting
work for Fleetronics and Physics
 ment and construct
vicing and repari of
tronic equipment.
Experience and qualifications in Elec.
tronis at an appropriate level ara
tssen
 Grade 6 : $£ 5023$ to $£ 5848$ per annum
Graded $5: £ 4480$ to $£ 5100$ per an-
num. Further details and application
forms from: Mr. M. E. Cano (EW).
.

Television Engineers

The search for excellence starts here
 Standards of BBC broadcasts are

 higher now than they have ever of our transmissions is due largely to the expertise of our Engineering teams. We want to and women who make the grade, the possibilities are endless. Our Engineers are closely involved with production staff in the making of programmes, either by providing the facilities
and here...

They are also responsible for the technica standards of our broadcasts and for the
maintenance of our technical equipmen You should have a degree in Electrical or Electronic Engineering, Applied Physics or a science subject, an HNC/HND or higher TEC certificate or diploma, or a C\&G Full Technological or 281); a strong interest in broadcasting, and normal colour vision and hearing.

and here...

Salaries, to be reviewed in April, range from $£ 5760$ to $£ 6260$ including shift allowances and the jobs, whic
are based mainly in the West London area also carry such benefits as a pension scheme, social clubs and staff restaurants.
Opportunities for personal development through training and promotion are good.
If you are interested please complete the coupon below and then return the whole advertisement to The Engineering Recruitment Officer, BBC, Broadcasting quoting reference no. 79.E.4156/WW.

BBG

Nam Mr/Mrs/Miss Addres

Engineering Recruitment Officer, BBC, Broadcasting House, London W1A1AA

We are a leading German electronics company in Munich. Our reputation is based on me manufacture of high-precision mea suring instruments and communications equipmen

Electronics Engineer
qualified to give the master touch to their English translations of data sheets, catalogues and manuals on electronic measuring and co. munications equipment His/her knowledge of German should be such that after about can also do translations Treanslaticants should be willing to work for some years in our translation department in Munich where he/she will find friendly atmosphere and British fellow-wôrkers. Starting salary will be in the region of $£ 8,000$ to $£ 10,000$ p.a. holiday $26-29$ days depending on age. Along with the usua
benefits of a large company we offer flexitime, subsidised canteen and travel costs for those living far from the office. If you are interested, please send your application together with ull curriculum vitae to ROHDE \& SCHWARZ, Personalabteilung P176.

ROHDE \& SCHWARZ GMBH \& CO. KG : MÜHLDORFSTR. 15 8000 MUUNCHEN 80 : TEL. [089)4129-2403 : W. GERMANY

DIAL 01-741 4011

Think of the Op Amp and the NAND Gate and your are through to: ChARLES AIREY ASSOCIATES 4 Hammersmith Grov

URRENT VACANCIES INCLUDE:
Chiof Control Engineor for multi-million pound company engaged in he manutacture of roof tiles. Managerial ability as important as the Surey. Excellent salary

Young Entropronourial Engineors to join a multidisciplinary inders, aerospace products, etc. Good microprocessor hardware/ software experience. Wilts. Salary good.
Microprocesseor Hardware/Software Engineors to design systems and supply modules for a verry wide range of applicictiossi.t kpereiense
in either:M6800, B.P.A. 1802, GM 1650 or INTEL 8085. Berks. in either:M6800, R.P.A.
Salary -"What es worth.
INTEL Microproceassor Engineors for message switching systems based on a
$€ 9,000$.

Digiteo Engineers for exceptionally advanced technology associated with an MPU control system for shipborne aerials or early warning
radar. To $£ 9,000$. Berks. radar. To $£ 9,000$. Berks.
Compurter Enginears for either technical support, field service
For further details, please contact:
(9940)

Charles Airey Associates
Hammersmith Grove, London W6 ONA. Tel: 01-7414011

BROADCAST ENGINEER 	
	Cis

Chief Electronics Technician II

 plannad pleveritive minineranace scheme is also req-

 Salar: $55945-\mathrm{F} / 31616$ pa.i. incl.
Job dasescipioion and pppication form avaitablat fom
 oxt 344.
Closing date: 8 February, 1980.
ewisham
Health District

Radio Communications

 Electronics Engineers and Software Designers
Mid-Sussex-S.W. London Salaries up to $\mathbf{\varepsilon 8 , 0 0 0}$

 To join our expanding R\&D. Laboratories covering a wide range of R.F.spectrum, from L.F. to V.H.F. Equipments include transmiters and receivers for marine- and land-based use, radio navaids and radi monitoring remote computer-controlled systems. Electronics Engineers should have experience in transmitter or receive
design, analogue or digital circuit design, microoprocessor por Sontw, malogue or digital circuit design, microprocessor applications. Software Designers should be experienced Programmers with
interest in control, signal processing or navigational software. interest in control, signal processing or navigational software. Atractive salaries are complemented by excellent prospects and
generous benefits. Contact: David Bird, Redifon Telecommunications Limited
Bromhill Road, Wandsworth, London, $\mathbf{S . W . 1 8 \text { . Phone: } 0 1 - 8 7 4}$
7281 (reverse Broomhill Road, Wan
7281 (reverse charges).

Lansdowne Appointments Register, Design House, The Mall,
London W5 5LS Tel: 0I-579 2282 (24 hour answering service).

Field Engineers

Oil-Well Surveys - worldwide
Seismograph is an in
throughout the world.
We have openings for hardy We have openings for hardy, single people, under 28, qualified in Electronics to at
least HNClevel to train as Oil-Well Field Engineers. Applicants must be prepared to
Work work in all weathers on world-wide assignments at short notice. Please do not apply
unless you meet these requirements.

The job involves responsibility for the operation and servicing of electronic
instrumentation and fort he production of seismic information from drilled wells.
You will receive specialisttranding You will receive specialisist training attour head heismarticers nearmation fromley drey, Kent, and you
may be based there whilst working from the K. wi beffered here whilst working from the UK.
We offer competitive salaries, attractive conditions of employment and leave
Please write or telephone for an application form quoting
ref. OWS. Appointments Manager, Seismograph Service ref. OWS. Appointments Manager, Seismograph Service
(England) Limited, Holwood, Westornam Roand, Keston,
Kent BR2 6HD. Tel: Farnhorough Kent 53355 . COLLEGE) Salary £3657-£3975 To repair and maintain audio
visual equipment including visual equipment including Some production work will
also be also be involved and the ability to work in a small team
is vital. City is vital. City and Guilds
qualifications are necessary. Application forms from Mrs
Officer, Beach, Services
On Officer, Hounslow
Borough Colege, London
Road, Isieworth Middle Borough Colege, London
Road, sliloworth, Middli-
sox. Toil: $01-568$ 0244

ROHDE\&SCHWARZ SENIOR TEST AND CALIBRATION ENGINEERS ENGINEERS

With a background in R R and microwaves, experienced in analogue, digita
techniques, logic and microporocessor controled ATE.
also vacancies exist for
TEST \& CALIBRATION ENGINEERS

Abstract

We offer an exceptional salary \star Performancer related bonus scheme \star Training abroad \star Trospects of of romotion $\star A$ wide variety of work $\star A$ happy atmospheri aNon

 \star Non-contributory pension scheme \star Sussidi ised restaurant. Please write or phone to:Mr. Z. Eres (Technical Manager) extension 43

```
aveley }\quad\begin{array}{l}{\mathrm{ Roebuck Road}}\\{\mathrm{ Chessington}}
    electric lto Surrey KT91LP Surrey KT9 1LP
\(01-3978771\)
```


BRUNEL UNIVERSITY

LABORATORY TECHNICIAN
Grade 4 required to undertake a wide range of dutitis relating to
mechanical, electrical and electronic engineering including constructechanical, electrical and electiranic engineering incluuding construc-
onen instalation, modififation, maintenance and sevicing of equip-
nent tor teaching and proiect work, which will involve a close working ment for teaching and project work,
relationship with staff and students.
Applicants should be educated to O.N.C. or C. \& G. level. Salary (under review) in the scale $£ 3,757-£ 4,275$ including London
Weighting. 21 days' annual leave plus Chris
uncheon, sports and social facilities.

Write for application form to the Establishment Secretary, | Brunel University, Uxbridge, Middlosex UB8 3PH or telephone |
| :--- |
| Uxbridge 37188 , extension 49. Closing date: 31 January, 1980. |
| 1987$)$ |

Radio Mechanic

An experienced radio mechanic, male or female, is urgently
required to work on installation, maintenance and constr required to work on instaliation maintenance and construction
of a wide range of fixed. porable and vehice radio equipment
at London Firis erigate Rate of pay is over $£ 85$ p,w for 40 hour. 5 day wesk Rate of pay is over $£ 85 \mathrm{p}$.w.
excellent conditions of service.
For further details and an application form, write or phone the
Brigade Personnel Officer (E3), Fire Brigade Headquarters, 8
London Fire Brigade
(10018)

NeneCollege Northampton

Applications are invited for the post o

LECTURER GRADE I/II

 in Electrical EngineeringCandidates should be graduates or Chartered Engineers with recent
industrial experience. The successtull applicant will be required to industrial experience. The successtul applicant will be required to
each general electrical engineering subjects including Instrumentaon of the level of a TEC Higher Certificat.

Salary Scale Lecturer Grade I $\quad \begin{aligned} & \text { Lecturer G3552-£6060 } \\ & \text { G Grade II } \\ & £ 4542-£ 7221\end{aligned}$ point of entry depending on previous experience

Applications forms, which should be returned within fourteen days
from the date of appearance of this Advertisement, are available, trom the date of appearance of this Advertisement, are available,
together with further particulars, from: The Deaan, School of
Technology, Nene College, St. George's Avenue, Northampton.

Land a good job

Your

Radio Officer's qualifications could mean a lot here onshore

If you're thinking of a shore-based job, work, job security, good money, and the pportunity to enjoy all the comforts of at home! The Post Office Maritime Service has acancies at Portishead Radio and qualified Radio Officers to undertake a
wide variety of duties, from Morse and wide variety of duties, from Morse and teleprinter operating to traffic
circulation and radio telephone operating.
To apply, you must have a United
Kingdom Maritime Kingdom Maritime Radio
Communication Operator's General proficiency in Radio-telegraphy or an
equivalent certificate issued by a

	Commonwealth Administration or the Irish Republic. Preferably you should have some sea-going experience.
	The starting pay at 25 or over will be about $£ 5381$; after 3 years' service this figure rises to around $£ 7087$. If you are between 19 and 24 your pay on entry will vary between approximately $£ 4229$ and £4937). Overtime is additional, and there is a good pension scheme, sickpay benefits, at least 4 weeks' holiday a year, and excellent prospects of promotion to senior management.
	For further information, please telephone Kathleen Watson on 01-432 4869 or write to her at the following address: ETE Maritime Radio Services Division (ET17.1.1.2, Room 643, Union House, St. Martins-le-Grand, London EC1A 1AR.

Post Offifice Telecommunications
(9741)

Air traffic Engineers
 The Civil Aviation Authority has vacancies
 You should also have had skilled working

for men and women as Air Traffic Engineers Grade 2 in its Telecommunications Division offering a variety of work on a wide range equipments
Air Traffic Engineers Grade 2 are involved in the installation and maintenance of radio, radar, air navigational and landing aids, and data processing systems. Staff are employed at Air Traffic Control Centres and some Civil Airports and other locations throughout the U.K. but at present most of the vacancies are likely to be in the South of England with some in Scotland and Shetland.

Qualifications and Experience
You should be at least 20 years of age and have obtained either the ONC (ENG) with an electronic bias or C \& G Telecommunications Technician T3 Certificates or T.E.C
Telecommunications Certificate with Radio options or other similar technical qualifications.
experience in radio, radar or data processing. Salary

Salaries are on the incremental scale 47777-£7472. Posts in the London area attract an additional allowance (Inner London (maximum salary $£ 8980$) are normally filled by promotion from Grade 2.

the Long Arm of the Law needs its voice ... Dorset Poolice Force depends upon its communications system
to direct its varied operations, from crime fighting to law
enforcement, so its voice must be heard. As enforcement, so its voice must be heard. As

Assistant Communications Officer

 it will be your job to see that it is, by assisting theCommunications ofticer in the maintenance of an efficient
communications syster thougt communications system throughout the area. This will entail
you in inspecting all Force owned equipment concerned with the computer based command and control system and
instructing both the Police and civilian personnel in its instructing both the Police and civilian personnel in its use
You will
and tell be be expected to supervise the installation of telex and teleprinter equipment, emergency radio and teleephone
links and oversee the manufacture, alteration and installation links and oversee the manufacture, alteration and installation
of specialist electronic and electrical apparatus. This sis anighly
responsible and specialised post and while we realise that it responsible and specialised post and while we realise thanit it
will be difficult for someone to meet our exact requirements,
we woil we would prefer you to have extensive G.P.O. expererencents, and
technical training qualifications. such as a Radio Officer's technical training qualifications, such as a Readio Oefficerc's and
Certiticate, Civil Aviation Standard with relevant experience
then Certificate, Civil Aviation Standard with relevan
the most modern communications equipment.
We would be interested in hearing from you when you have
completed your service with the Force and we will give you completed your service with the force and
training in areas that you lack experience.
We offer excellent conditions, a salary of $£ 5,067$ inclusive, an
essential 'Car User' Allowance and a generous assistance car purchase scheme.
If you'd like to find our more and help the long arm of the Police Headquarters, Winfrith al Bindol Abbenstable, 462727 , ext. 254 for further details and an application form.
Closing date for completed applications: 22 nd February.
1980 .

PROJECT ENGINEERS

We need two Engineers to work in our Engineering Projects group and assist us with a major programme of expansion and Duties within this small
design and construction group include the equipment, the appraisal and acceptialised testing of new equipment and the planning of system installations.
A thorough knowledge of digital te modern television colour cameras would be an advantage.
Applicants should ideally be qualified to at least HND or equivalent standard and have had
several years relevant training and experience in television broadcasting.
Starting salary up to $£ 7500$ depending on qualifications and experience.

Applications in writing to:
Personnel Executive Yorkshire Television Ltd
The Television Centre Leeds LS3 1JS

YORKSHIR
TELEVISION
Member of the Trident Television Group (10003)

GEC Medical Equipment Limited

East Lane, Wembley, Middlesex We are the largest Eritish manufacturer of diagnostic medical
equipment and wish ito expand

Electronic Development
Engineers
Designers
Draughtsmen
Technical Illustrators
Test Engineers \& Technicians

HNC Level Engineers~
 (Electrical or Electronic)

Train for the future as a Broadcast Transmission Engineer

BRIGHTON POLYTECHNIC LEARNING RESOURCES
THREE VACANT POSTS GOOD SALARIES OFFERED
ELECTRONIC ENGINEER
To work with a team of experienced engineers and technicians
developoing colour television and other autio visual facilities

 training to oegereo or equivialent standard will be expected but
proven ability and experience in electronic design and conproven ability and experience in electionic design and con-
struction (roperaraly including televisioion) will be rated even more highly.

VIDEO RECORDING AND

STUDIO ENGINEER
 Plumbicon colour rechnique and a wide range of V TRs - some
 tion ado.oning studios, containing systems with colour correc
toins and
Opearitonul itrack sound.
 degree or equivalent qualification are desirable.

VTR ENGINEER

Unique opportunity to work in the forerfont of helical ver
 broadcast
fomats.
Further details and application forms from the Personne

Officer, Srighton Polytechnic \begin{tabular}{l}
Moulsocoomb, Brighton BN2

4AT. Tol. 0273

693655

Ext

\hline

2536. Clozing date 30th

Lanuan, 1980

\hline
\end{tabular}

ELECTRONICS JOURNALISM

Electron, the weekly technical magazine for designers and managers in electronics, equires a

FEATURES EDITOR

We re looking for someone with a good allround knowledge of electronics to commission features articles. Experience of technical writing or publishing, although preferred, is not essential, but a good command of the English language is important

Salary: $£ 6464$ plus $£ 210$ reading allowance.
Telephone: Barrie Nicholson on 01-2619111 extension 257 for an application form

Brunei Training Officer (Teleprinter)

Department of Telecommunications Tax free salary up to £8,100

As par of tits continuing expansion and improvement
programme the Department of Telecommunications Prequires a Training officer (Teleprinterl
Candidates should be over 35 years of age and have at
 must have a sound knowledge of teleprinter senvicing
and overhaul of either the CREED 444 or SIEMENS $T 100$ and overna
machines.
The successful candidate will ber resonsible for the
training of occal staft both formally and in the field on training of local staff both formally and in the field on
all aspects of the discripine.
The tax free salaries include a special allowance and
attracts a 25% gratuity. attracts a 25% gratuity.
Benefits include free passages, leave allowance,
subsidised housing, education allowances, children subsidised housing, education allowances, children's
holicay visist passages. interest-free car loan and outfit
allowance. Contract 3 years. allowance. Contract 3 years.
For full details and application form telephone Anne
Eames $01-2227730$ ext 3231 or write quoting reference number MT/310/WD.
Crown Agents (1)
The Crown Agents for Oversea Governments and Administrations, Recruitment Divisio
4 Millbank, London SWPP $3 J D$.

Broadcast Engineer

TEST AND SERVICE
Seltech Equipment Limited is a leading supplier of broadcast equipment and its increasing share of th market requires a major expansion programme employment of additional engineering staff. The position offered will involve testing and servicing a full range of broadcast products including switching, pulse generation, time code, clock and audio systems, utilising the latest technology. The successful applicant will probably be qualified to HND level but broadcast related experience is of prime importance.
The position is based in the company's new premises at Bourne End, Bucks. Limited travel will be required.
Salary and conditions will be in keeping with the position offered.
In the first instance apply to: D. Craddock, General Manager.

SELTECH
seltech equipment limited Rose Industrial Estate, Corese En
Bourne End, Bucks, SLI 8 SAT
Tin

ENGINEERS \& TECHNICIANS

1980 -
The Decade to Develop your future

If you want a real professional challenge and
ARAMCO
could be the employer you need
Aramco are the world's largest oil producers with a massive scale of operations in Saudi Arabia. You will be working with modern some of the most challenging projects.

The Communications Department of

ARAMCO

require Engineers and Technicians in the
following disciplines COMMUNICATIONS ENGINEERS \& TECHNICIANS ELECTRICAL \& ELECTRONIC ENGINEERS

Salaries are high, as you would suspect with a world leader. Engineers can earn up to $\mathbf{£ 1 6 , 9 0 0}$ per contract year, Technicians
to $£ \mathbf{1 3 , 7 0 0}$ - after tax.

Contracts are single status and renewable with air-conditioned accommodation an free medical care. Married men receive
14,25 days' leave after each 4 -month period, single men 30 days after 12 months.

A valid U.K. Driving Licence is required
Find out more about the opportunities with Aramco. Please write, giving brief caree

COMMUNICATE NORTH

Development of North Sea installations has irreased the need for advanced technology in the
field of communications and computer controlled oil production systems. This area offers challenging
opportunities and career security throughout the 80's and beyond.
Our client. a
exp
expang comications company, ii industry, invite applications from suitab

Communications Engineer Gross Salary £9,000 +
Gross Salary $£ 9,000+\quad$ p.a In addiltion to a varled workload at onshore
locations, responsiblity will also include troubleshooting, repalr and maintenance, and the Installation of communications equiloment on
offshore platforms. It will be necessary to have experience of Broad-band systems, multiplex and telephone exchanges, $\mathrm{HF} / \mathrm{SSB} / \mathrm{ISB}$ systems, $\mathrm{VHF} / \mathrm{FM}$ Transceivers, portables and teleprinters
candldates should hold an H.N.C. or B.Sc. in a relevant discipine or an equis
qualification I.e. Foreman of Signals.

Communication Technician Gross Salary $£ 7,000+$ p.a This position is workshop based but provides
varied and interesting workioad with commitment to offshore and field work on an ad years experience in Installation and repalr of radlo and telecommunications equipment, with competence in the operation of associated tes
equipment.
Full
and
cuild equipment. Full ocity and Cuilds qualifications would be regarded as sultable

Computer Service Engineer Gross Salary $£ 9,000+\quad$ p.a qualifled engineers who will be working on project both on and offshore. Projects include th aided oll production systems. Engineers should have broad digital experience in computer and peripheral maintenance and have the potential to possess an HNC or B.SC in a relevant discipline and have previous supervisory experience.
Due to the fact that engineers and technicians are necessary for them to live in the Aberdeen are personnel staff will provide expert help and advic for those wishing to relocate and generous Please contan Margat Duthie at Aberdeen 28921 for an application form

GTS Personnel Services

MANAGEMENT SERVICES LIMITED

COMPUTER

Vermont Research
 Limited

Thames Television
We have a vacancy for a
ENGINEER
based at our Euston Studios

(03723) 76221 Or apply in writing to: Vermont Research Limited Cleeve Road, Leatherhead

Surrey KT22 7NB

PERIPHERALS

IMPERIAL WAR MUSEUM
LONDON
Audio Technician

The Museum ill lustrates and records all aspects of the two
world wars and all other mil tary operations involving Britain
and the Commonweath since 1914.
This post is in the Department of Sound Records, where
the technical ine echnical operations are based on a Sound Suite
incorporatig Levers-Rich E200 and Revox tape machines,
disc reproducers, a Neve BCM $10 / 2$ mixing ask and ancill disc reproducers, a Neve BCM $10 / 2$ mixing desk and ancillary
facilitites. It carries responsibility for regular servicing of all the audio equicmenent, dutbobing gibity peration regular serd trainicing and
supervising an assistant to carry out transfer operations. Supervising an assistant to carry out transfer operations.
Doties include some location recording, control of pubblic
listening facilies listening facilities, production of programme material tor the
Museum's subtic and educational services and supervising the
production of Museum s public and ed
production of copy tapes.

Candidates should preferably have an ONC, C \& G,
TEC/SCOTEC or equivalent qualification in Engineering TEC/SCOTEC or equivalent qualification in Engineering or
other relevant subject, but those with special experience will be considered.

All candidates must have an aggregate of at least 8 years recognised training (e.g. apprenticeships) and experience
(which may include up to 3 years' relevant full-time study), (which may include up to years relevant full-tim.
and be experienced audio equipment technicians.
Salary (under review) starting at $£ 5760$ rises to $£ 6330$.
Non-contributory pension scheme.
For further details and an application form (to be returned Al February A, Basingstoke, Hants, RG21 1 JB , or telephone Basingtoke, (O255) 6851 (answering servicice opera
outside office hours). Please quote ref: $T / 5272$.

ELECTRONIC SERVICE ENGINEER

We are looking for an engineer to take charge of the mainte-
nance of our U.K. computer centre. This position will require nance of our U.K. computer centre. This position will require
good digital electronics background with particular experience in computer peripherals. It will be necessary to travel to the
U. A. . for training courses and liaison with service engineers U.S.A. for training courses and liaison with service engineers
in our Canadian and North American centres. A company car will be supplied after full training. Our company offer a realistic bonus and free medical schemes.
Salary offered $£ 7,500$ p.a. negotiable depending upon
experience in computer systems

Roy Self
SEFEL GE
SEFEL GEOPHYSICAL (UK) LTD Turriff Building
Great West Road Great West
Brentford
Middlesex Middlesex
Telephone: (01) 5683273

Professional Careers

 in Electronics

All the others are measured by us... At Marconi Instruments we ensure that the very best of innovative design is used on our range of
communications test instruments and AT communications test instruments and A.T.E. We havea
number of interesting opportunities in our Design Production and Service Departments and we can attractive salaries, productivity bonus, pension and sick pay schemes together with help over relocation. If you are interested to hear more, please fill in the

DEVELOPMENT ENGINEER

To work on the design of new broadcast TV studio products. Applicants should have some knowledge
of television studio techniques and be qualified to of television studio techniques and be qualified to HND or Degree leve

TEST ENGINEERS

At senior and intermediate level to work on our range of advanced broadcast television studio products, including col
television studio cameras.
Applicants should have an up-to-date knowledge of digital and linear circuit techniques gained from experience working on television studio equip
ment, radar equipment or similar sophisticated products and qualified to HND, HNC or equivalen level.

SYSTEMS ENGINEER

You would be involved in all stages of product management on the design and building of studio occasional world requires someone with a background in this type of work, or in the operational side of televis type of the ability to take charge of people and deal with problems in the field on your own initiative.
Employment benefits include excellent salary generous holidays, free life and health insurance pension s
expenses.
Please apply for further details and application forms to Jean Smith at the address given below.

LINK mintais
Hants, SP10 5Al.
ELECTRONICS Telephone: (0264) 61345

WIRELESS WORLD, FEbRUARY 1980

Classified

Electronics Design Engineers

Rank Research Laboratories are looking for young engineers who
are keen to tackle analogue and digital electronic design for are keen to tackle analogue and digital lelectronic design for
therral imaging systems and the epplication of microprocessors. This work will a trtact engineers with ability in digital and analogue new systems in the fields mentioned.
Good salaries will be offered to suitable candidates and it is a Rank Organisation policy to assist professional career development. The
company has a contributory pension fund and non-contributory life assurance scheme.
Men and women with a few years' R \& D experience and a degree or equivalent in electronic engineering or rhysics are invited to
phone or write for an application form to the

Administration Manager, Rank Research
Laboratories, P.O. Box 33, Phoenix Works, Great
01-5689766, extn. 26.
RANKRESEARCH LABORATORIES

Opportunities for Test Engineers If you've experience in thyristor control drives, digital logic techniques, computer tems, or microprocessors, then you could be the test engineer we re looking for.

We need several engineers to work on a wide range of electronic control equipment.
Ideally, you will have served an apprenticeship in the electrical industry, and be
ified to ONC or HNC standard, although experience could well take the place of formal qualified to

If you' re interested, apply to our Personnel Officer on Rugeley 5151 or write to him at:

$\frac{1}{\text { THORN }}$ III! nutomation

thorn automation limited P.O. Box 4, Rugeley

THE INNER LONDON EDUCATION AUTHORITY COLLEGE OF PRINTING Elephant and Castle London SE1 6SB TELEVISION TECHNICIAN/ ENGINEER Candidates should be conversant with equipment and be capable of electronic maintenance. Experience in professio- nal broadcasting would be an advan- tage, as well as an interest in ex- applicant will be expected to assist in the running studio productions, and video tape editing. Salary scale $£ 4,436.64-£ 6,509.64$ inclus ive (ST1/2) Application form, returnable within 14 days, obtainable from the College on 735-8484, Ext. 227

Classified

```
                            42.
```


 \section*{\section*{CLASSIFIED ADVERTISEMIENTS
 \section*{\section*{CLASSIFIED ADVERTISEMIENTS

 Use this Form for your Sales and Wants

 Use this Form for your Sales and Wants

 To "Wireless World" Classified Advertisement Dept., Dorset House, Stamford Street, London, SEI GLU}

 To "Wireless World" Classified Advertisement Dept., Dorset House, Stamford Street, London, SEI GLU}

PLEASE INSERT THE ADVERTISEMENT INDICATED ON FORM BELOW

- Rate $£ 1.50$ PER LINE. Average six words per
line. Minimum THREE lines.
- Name and address to be included in charge if used
- Name and address to be included in charge if used
- Box No. Allow two words plüs 60p.
- Box No. Allow two words plus 60p.
- Cheques., etc., payable to "Wireless World" and
crossed ", \& Co."
\qquad
\qquad
\qquad

please write in block letters. classification.
NUMBER OF INSERTIONS
\qquad
\qquad

INDEX TO ADVERTISERS
Appointments Vacant Advertisements appear on pages 126-143

	PAGE	G.E.C. Mo Valve	PAGE$\ldots 8$	Olson Electronics	PAGE .820	
Aero Electronics						
mbit International						
${ }^{\text {Anders Electronics Ltd }}$		Hall Electric Ltd	10	Precision Petite Ltd		
${ }_{\text {Aspen Electronics }}^{\text {Antd }}$ Lta				Pye Unicam	90	
Astra Elec. Comps.		Harris Electronics (London) Ltd	26,30	Hayes Ra		
		SRadio				
		H.H. Electric Ltd		Quantum Electronics		
		H.H. Audio Hilomast Lt		Radio Components Specialists		
C. Bamber Electronics	${ }_{26}$					
Barrie Electronics Ltd	105	Hilomast Ltd			Radio Shack Ltd R.C.S. Electronics	
Bauch, F.W. O. Ltd ${ }_{9}^{109}$						
Bi-Pak Semiconductors Ltd Boss Industrial Mouldings Ltd	${ }^{93}$					
		Industrial Tape Ap Interport Mains		Sabtronics International		
			..	gan		
Cambridge Learning Carston Electronics Lt		K.A.C. Electronic Investments Ltd				
	18,19			Scopex Instruments Ltd		
Case Systems			109	Service Trading	20	
Chiltmead Ltd		Keithey Instruments				
Colomor (Electronics		Kelsey Acoustic		Sonic Sound Audio		
	120	Kirkham Electronics .				
Communication ${ }^{\text {' } 80}$						
Compec Europe ' 80 Computer Appreciation						
		Langrex		Star Devices		
Continental Specialists Corp		Leevers-Rich Equip. Ltd 22		Surrey Electroni	108	
				Switchgear 109		
$\underset{\substack{\text { Cropico Ltd } \\ \text { Crouchcliff }}}{ }$	122	Lowe Electronics Ltd …..................... 8				
		Maclin		Tandy Corporation		
				${ }_{19}^{16}$		
Datong Display Electronics		Maplin Electronic Supplies	cover iii		Tektronix (Telequipment)Teleraio Electronics	Coverii
	124					
Dominus ${ }_{\text {drake }}$ Transormers Litd	112112	Marshall, A. \& Sons (London) L				
		Millbank Electronics (M.I.L.)				
				Vero Systems Litd		
Electronic Brokers Ltd		Munoticore Solders Ltd .	Cover iv	Wellbury West Hyde Developments Ltd Wilmslow Audio		
	115, 116, 1177.144					
Faircrest Eng Ltd		Newbear Computer Stores Newnes-Butterworth Northeast Audio Ltd	99,104$\cdots .98$$\ldots 66$			
	108					
				z. \& I. Aero Services L	4, 106	

overseas advertisement

Hungary: Mrs Editi, Baiusz, Hungexpo Adverisising Agency,

[^2]Wireless World, February 1980

Even if tin prices stabilised, a change from 60/40 alloy to Savbit Solder could save you filoo/tonne, ensure a better job...

 olves the problem of fine copper wires and thin eils deteriorating during soldering, but also contains ess tin than $60 / 40$ alloy. We make both so we ust offering to alleviate your rising metalszosts. During normal soldering, a dissolving action sauses the wire to weaken and embrittle-often to reak during subsequent field use. Savbit, however, is a rosin based, 5 -core wire solder comparable in joint quality to standard high jerformance alloys, but capable of dramatically Diting the copper dissolving action. As this diagram shows,*, compared with a 60/40 Iloy, Savbit can reduce the dissolution of coppe jy as much as 100 times. Yet wetting rate, flow, - with creep strength and shear strength actually ncreased.
(Indicative of product advantages only; not to scale)

...and more

Some people think Savbit alloy is only usable with plain copper soldering ron bits, but this isn't true As these photographs illustrate significantly on the cost of iron-plated soldering iron bits, which have a copper core. This is exposed through cracks in the plating.
racked iron-plated dit, after 4 .
perations using $601 / 40$ Solder.
Add this advantage to the increased reliability and oint quality Savbit offers, and you'll understand why nore and more 60/40 users are making the change and proliting. The Ministry of Defence have given a
;pecial newApproval No. DTD 900/4535A for Savbit dlloy with ERSIN 362 flux to be used in lieu of Solders o B.S. 219 and B.S. 441.

Even if tin prices stabilised, a change from 60/40 alloy to Savbit Solder could save you fioo/tonne, ensure a better job...

The reason is that Multicore Savbit not only solves the problem of fine copper wires and thin foils deteriorating during soldering, but also contains less tin than 60/40 alloy. We make both so we are just offering to alleviate your rising metals costs.

During normal soldering, a dissolving action causes the wire to weaken and embrittle-often to break during subsequent field use.

Savbit, however, is a rosin based, 5-core wire solder comparable in joint quality to standard high performance alloys, but capable of dramatically inhibiting the copper dissolving action.

As this diagram shows*, compared with a 60/40 alloy, Savbit can reduce the dissolution of copper by as much as 100 times. Yet wetting rate, flow, conductivity and capillary force are almost identical -with creep strength and shear strength actually increased.
*(Indicative of product advantages only; not to scale)

60/40

60/40

ค०

Some people think Savbit alloy is only usable with plain copper soldering iron bits, but this isn't true.

As these photographs illustrate dramatically, Savbit also saves significantly on the cost of iron-plated soldering iron bits, which have a copper core. This is exposed through cracks in the plating.

Cracked iron-plated bit, after 40,000 simulated operations using 60/40 Solder.

Add this advantage to the increased reliability and joint quality Savbit offers, and you'll understand why more and more 60/40 users are making the changeand profiting. The Ministry of Defence have given a special new Approval No. DTD 900/4535A for Savbit alloy with ERSIN 362 flux to be used in lieu of Solders to B.S. 219 and B.S. 441 .

Cracked iron-plated bit, after 40,000 simulated operations using SAVBIT Solder.

[^0]: . volts above the zener voltage.

[^1]: Ihave put in only the key values to keep he table uncluttered, and have plotted for $a=1$ is a specig. 13 . The vertical line ('limit'), having y at all values between $-\infty$ and $+\infty$ for $x=1$. This is the sole alue of x for $a=1$ since 1 to any power (y) is always 1 . You will observe that the gets larger. Try to find diminish as x ship they have to x by using the tangential ruler again at a couple of points, for convenience at $x=5$ and
 $x=10$. $x=10$.
 For $a=2 x=5$ slope $=\mathrm{d} y / \mathrm{d} x=1 / 3.5$ whereas at $x=10$

[^2]:

